首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
New human and mouse microRNA genes found by homology search   总被引:2,自引:0,他引:2  
Weber MJ 《The FEBS journal》2005,272(1):59-73
  相似文献   

3.

Background

Recent data show aberrant and altered expression of regulatory noncoding micro (mi) RNAs in prostate cancer (PCa). A large number of miRNAs are encoded in organized intronic clusters within many protein coding genes. While expression profiling studies of miRNAs are common place, little is known about the host gene and their resident miRNAs coordinated expression in PCa cells. Furthermore, whether expression of a subset of miRNAs is distinct in androgen-responsive and androgen-independent cells is not clear. Here we have examined the expression of mature miRNAs of miR 17–92, miR 106b-25 and miR 23b-24 clusters along with their host genes C13orf25, MCM7 and AMPO respectively in PCa cell lines.

Results

The expression profiling of miRNAs and host genes was performed in androgen-sensitive MDA PCa 2b and LNCaP as well as in androgen-refractory PC-3 and DU 145 cell culture models of PCa. No significant correlation between the miRNA expression and the intrinsic hormone-responsive property of PCa cells was observed. Androgen-sensitive MDA PCa 2b cells exhibited the highest level of expression of most miRNAs studied in this report. We found significant expression variations between host genes and their resident miRNAs. The expressions of C13orf25 and miR 17–92 cluster as well as MCM7 and miR 106b-25 cluster did not reveal statistically significant correlation, thus suggesting that host genes and resident miRNAs may be expressed independent of each other.

Conclusion

Our results suggest that miRNA expression profiles may not predict intrinsic hormone-sensitive environment of PCa cells. More importantly, our data indicate the possibility of additional novel mechanisms for intronic miRNA processing in PCa cells.  相似文献   

4.
5.
6.
7.
Molecular evolution of the rice miR395 gene family   总被引:6,自引:1,他引:5  
  相似文献   

8.
9.
10.
11.
S Trivedi  JM Hancock 《Gene》2012,508(1):73-77
The locations of microsatellites in mammalian genomes are restricted by purifying selection in a number of ways. For example, with the exception of some trinucleotide repeats they are excluded from protein coding regions of genomes because of their tendency to cause frameshift mutations. Here we investigate whether purifying selection might affect the types and frequencies of microsatellites in microRNA (miRNA). We concentrate on miRNAs expressed in neurons and the brain (NB-miRNAs) as microsatellites in these genes might give rise to similar effects as disease-causing repeats in protein coding genes. We show that in human miRNAs in general AG and AT microsatellites are reduced in frequency compared to AC repeats and that NB-miRNA genes contain significantly fewer microsatellites than expected from frequencies of microsatellites in other miRNA genes. NB-miRNAs show lower levels of sequence divergence in comparisons of human-macaque orthologues and more often have detectable orthologues in non-human mammals than non-NB-miRNAs. This suggests that microsatellites in miRNAs may indeed be constrained by purifying selection and that the strength of this selection may differ between NB-miRNAs and non-NB-miRNAs. We identify a number of ways in which the potential disruption of pre-miRNA secondary structure might result in purifying selection. However other, non-selective forces could also play a role in generating the biases observed in miRNA microsatellites.  相似文献   

12.
13.
14.
15.
MicroRNAs (miRNAs) are endogenous, small non‐coding RNAs known to regulate expression of protein‐coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein‐coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self‐renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.  相似文献   

16.
17.
18.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

19.
20.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that can play important regulatory roles in many important biological processes. Although clustering patterns of miRNA clusters have been uncovered in animals, the origin and evolution of miRNA clusters in vertebrates are still poorly understood. Here, we performed comparative genomic analyses to construct 51 sets of orthologous miRNA clusters (SOMCs) across seven test vertebrate species, a collection of miRNA clusters from two or more species that are likely to have evolved from a common ancestral miRNA cluster, and used these to systematically examine the evolutionary characteristics and patterns of miRNA clusters in vertebrates. We found that miRNA clusters are continuously generated, and most of them tend to be conserved and maintained in vertebrate genomes, although some adaptive gains and losses of miRNA cluster have occurred during evolution. Furthermore, miRNA clusters appeared relatively early in the evolutionary history might suffer from more complicated adaptive gain-and-loss than those young miRNA clusters. Detailed analysis showed that genomic duplication events of ancestral miRNAs or miRNA clusters are likely to be major driving force and apparently contribute to origin and evolution of miRNA clusters. Comparison of conserved with lineage-specific miRNA clusters revealed that the contribution of duplication events for the formation of miRNA cluster appears to be more important for conserved miRNA clusters than lineage-specific. Our study provides novel insights for further exploring the origins and evolution of miRNA clusters in vertebrates at a genome scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号