首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mitochondria isolated from cockroach thoracic muscles have been used to demonstrate that the rate of oxidation of several Krebs-cycle intermediates is under the control of adenosine diphosphate concentration. Respiratory-control indices as high as 25 have been achieved with both pyruvate and glutamate. Contrarily, the rate of oxidation of α-glycerol phosphate is influenced by adenosine diphosphate concentration to only a minor degree, but is markedly inhibited by accumulation of the oxidation product. When the ratio [reactant]/[product] is approx. 3, oxidation of α-glycerol phosphate becomes very low. These findings are used to propose a theory which may satisfactorily explain the problem of respiratory control in insect muscles.  相似文献   

3.
Eighty-four tumor samples from 70 women with primary ovarian cancer were assayed for cytosol estrogen (ERc) and progestin (PRc) receptor concentrations and aromatase activity. In addition, 22 of the tumors were studied for their response to the aromatase inhibitor, 4-OH-androstenedione, in a soft agar clonogenic cell assay system. Although aromatase activity was detected in almost all of the primary tumors, this enzyme was barely detectable in the majority of metastatic tumor samples. There was no significant correlation between aromatase activity and either the ERc or PRc content of the tumors, or tumor grade. Of 12 tumors grown successfully in the soft agar culture system, only 1 showed a substantial (>50%) reduction in colony-forming efficiency after exposure to the aromatase inhibitor. These results suggest that local estrogen biosynthesis probably does not play an important role in the majority of epithelial ovarian tumors. However, there may be a small subset of estrogen receptor-positive tumors in which aromatase could provide a local growth stimulus.  相似文献   

4.
Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.  相似文献   

5.
Intact mitochondria were prepared from spinach (Spinacia oleracea L. var. Kyoho) leaf protoplasts and purified by Percoll discontinuous gradient centrifugation. Assays of several marker enzymes showed that the final mitochondrial preparations obtained are nearly free from other contaminating organelles, e.g. chloroplasts, peroxisomes, and endoplasmic reticulum. These mitochondria oxidized malate, glycine, succinate, and NADH, tightly coupled to oxidative phosphorylation with high values of ADP to O ratio as well as respiratory control ratio. The rate of NADH oxidation was 331 nmoles O2 per milligram mitochondrial protein per minute, which is comparable to that obtained by highly purified potato or mung bean mitochondria. However, the activity of glutamine synthetase was barely detectable in the isolated mitochondrial fraction. This finding rules out a hypothetical scheme (Jackson, Dench, Morris, Lui, Hall, Moore 1971 Biochem Soc Trans 7: 1122) dealing with the role of the mitochondrial glutamine synthetase in the reassimilation of NH3, which is released during the step of photorespiratory glycine decarboxylation in green leaf tissues, but it is consistent with the photosynthetic nitrogen cycle (Keys, Bird, Cornelius, Lea, Wallsgrove, Miflin 1978 Nature (Lond) 275: 741), in which NH3 reassimilation occurs outside the mitochondria.  相似文献   

6.
This article describes a quick basic method adapted for the purification of mammalian mitochondria from different sources. The organelles obtained using this protocol are suitable for the investigation of biogenetic activities such as enzyme activity, mtDNA, mtRNA, mitochondrial protein synthesis, and mitochondrial tRNA aminoacylation. In addition, these mitochondria are capable of efficient protein import and the investigation of mtDNA/protein interactions by DNA footprinting is also possible.  相似文献   

7.
Purpose To examine the migration responses of monocyte/macrophages (MO/MA) expressing complementary receptors to chemokines produced in the tumor environment of epithelial ovarian cancer (EOC). Methods We examined the expression of the chemokine receptors, CCR1, CCR5, and CXCR4, on EOC associated ascitic and blood MO/MA; their response to complementary chemokines in a MO/MA migration assay and the F-actin content in an actin polymerization assay. A validated cDNA microarray assay was then utilized to examine alterations in pathway genes that can be identified with cell migration. Results Ascitic and EOC blood MO/MA express CCR1, CCR5 and CXCR4, but differently. Cell surface expression levels for CCR1 and CCR5 were higher in ascites than that of normal blood in contrast to CXCR4 levels in ascitic MO/MA which were lower. EOC associated ascitic or blood MO/MA failed to migrate in response to the CC ligand RANTES and to the CXCR4 reactive chemokine, SDF1 (CXCL12). Ascitic and most EOC blood MO/MA also behaved differently from normal blood MO in the polymerization/depolymerization assay. A cDNA gene analysis of purified ascitic MO/MA demonstrated that a number of genes involved with chemokine production, focal adhesion, actin cytoskeletal function and leukocyte transendothelial migration were down-regulated in the ascitic MO/MA when compared to normal blood MO. Moreover, PBMC cDNA from EOC patients’ blood also showed gene profiles similar to that of ascitic MO/MA. Conclusions Defective migration and polymerization/depolymerization activity of MO/MA from EOC patients and a significant down-regulation of critical pathway genes suggest that other mechanisms might be involved in the accumulation of systemically derived MO at the tumor site of EOC patients. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Respiratory chain complexes are fragments of larger structural and functional units, the respiratory chain supercomplexes or "respirasomes", which exist in bacterial and mitochondrial membranes. Supercomplexes of mitochondria and bacteria contain complexes III, IV, and complex I, with the notable exception of Saccharomyces cerevisiae, which does not possess complex I. These supercomplexes often are stable to sonication but sensitive to most detergents except digitonin. In S. cerevisiae, a major component linking complexes III and IV together is cardiolipin.In Paracoccus denitrificans, complex I itself is rather detergent-sensitive and thus could not be obtained in detergent-solubilized form so far. However, it can be isolated as part of a supercomplex. Stabilization of complex I by binding to complex III was also found in human mitochondria. Further functional roles of the organization in a supercomplex are catalytic enhancement by reducing diffusion distances of substrates or, depending on the organism, channelling of the substrates quinone and cytochrome c. This makes redox reactions less dependent of midpoint potentials of substrates, and permits electron flow at low degree of substrate reduction.A dimeric state of ATP synthase seems to be specific for mitochondria. Exclusively, monomeric ATP synthase was found in Acetobacterium woodii, in P. denitrificans, and in spinach chloroplasts.  相似文献   

10.
11.
12.
13.
Karve TM  Preet A  Sneed R  Salamanca C  Li X  Xu J  Kumar D  Rosen EM  Saha T 《PloS one》2012,7(6):e37697
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.  相似文献   

14.
Synchronous waves of proliferation in tumor cells taken from patients with ovarian cancer were observed using flow cytometry to measure the fraction of cells undergoing DNA replication and displaying tumor-cell-specific immunofluorescence. When saline washings of the abdominal cavity were analyzed at 2-4 hr intervals round-the-clock, the percentage of cells in the chromosome replication cycle (S + G2 percentage) showed 12-hr and often higher frequency rhythms in proliferation. These higher frequency rhythms in DNA replication show a relatively constant phase relationship to the patient's circadian clock with peak proliferation occurring most commonly at 10 a.m. to 12 noon and again at 10 p.m. This proliferation rhythm is therefore partially out of phase with the 24-hr rhythms in proliferation seen in normal cells. The findings on human cancer reveal a fundamental difference in the temporal organization of normal and tumor cell growth that should be exploited for therapeutic benefit.  相似文献   

15.
Cytogenetic analysis of two human ovarian adenocarcinomas show identical specific anomalies. These two tumors exhibit, in all the analysed mitosis, a paracentric inversion of chromosome 3 and a translocation between chromosomes 2 and 5. A relationship between these markers and the location of human oncogenes on chromosomes 2, 3 and 5 should be considered.  相似文献   

16.
Ovarian cancer is the deadliest gynecologic cancer due to lack of early effective diagnosis and development of resistance to platinum-based chemotherapy. Several studies reported that adenosine concentrations are higher in tumor microenvironment than in non-tumor tissue. This finding inspired us to study the role of adenosine in ovarian cancer cells and to investigate if adenosine pathways offer new treatment options urgently needed to prevent or overcome chemoresistance. The ovarian cancer cell lines HEY, A2780, and its cisplatin-resistant subline A2780CisR were used in this study. Expression and functional activity of adenosine receptors were investigated by RT-PCR, Western blotting, and cAMP assay. A1 and A2B adenosine receptors were expressed and functionally active in all three cell lines. Adenosine showed moderate cytotoxicity (MTT-IC50 values were between 700 and 900 μM) and induced apoptosis in a concentration-dependent manner by increasing levels of sub-G1 and cleaved PARP. Apoptosis was diminished by QVD-OPh, confirming caspase-dependent induction of apoptosis. Forty-eight hours pre-incubation of adenosine prior to cisplatin significantly enhanced cisplatin-induced cytotoxicity in a synergistic manner and increased apoptosis. SLV320 or PSB603, selective A1 and A2B antagonists, was not able to inhibit adenosine-induced increase in cisplatin cytotoxicity or apoptosis whereas dipyridamole, a nucleoside transporter inhibitor, completely abrogated both effects. Mechanistically, adenosine increased pAMPK and reduced pS6K which was prevented by dipyridamole. In conclusion, application of adenosine prior to cisplatin could be a new therapeutic option to increase the potency of cisplatin in a synergistic manner and thus overcome platinum resistance in ovarian cancer.  相似文献   

17.
This study was conducted to compare the secretion of TGF-beta isoforms by human ovarian carcinoma (OVCA) cell lines (n=12) and human peritoneal mesothelial cells (HPMC;n=6) and to examine the regulation of their production by inflammatory cytokines. TGF-beta isoforms were furthermore analysed in OVCA-associated ascitic fluids. HPMC constitutively produced considerable amounts of TGF-beta1 (median 42 pg/10(5)cells; range 7-98) but only minimal amounts of TGF-beta2 (median 0.8 pg/10(5)cells; range 0-1.5). Treatment of HPMC with IL-1beta (10 ng/ml) resulted in a significant elevation of the secretion of both TGF-beta1 (median 187 pg/10(5)cells; range 71-264;P<0.001) and TGF-beta2 (median 1.8 pg/10(5)cells; range 0-13;P<0.01). In OVCA TGF-beta1 and TGF-beta2 were detected in 7/12 and 11/12 of the cell lines, respectively. The levels detected varied widely for TGF-beta1 (median 25 pg/10(5)cells; range 0-410) as well as for TGF-beta2 (median 14 pg/10(5)cells; range 0-419) and there was no correlation between the two isoforms. In contrast to HPMC, TGF-beta secretion by OVCA was not affected by any of the inflammatory cytokines tested. TGF-beta3 could not be detected in supernatants, neither in OVCA nor in HPMC. In ascitic fluids the median level of TGF-beta1 (median 5443 pg/ml; range 737-14687) was 10-fold higher than the level of TGF-beta2 (median 545 pg/ml; range 172-3537). The present data provide a model for the analysis of the molecular mechanisms of aberrant TGF-beta production by OVCA and support the hypothesis that HPMC are an important source of ascitic TGF-beta.  相似文献   

18.
19.
Glycodelins (Gds) are glycoproteins with a gender specific glycosylation. Glycodelin A (GdA) is primarily produced in endometrial and decidual tissue and secreted to amniotic fluid. Glycodelins were also identified in several cancer types, including serous ovarian cancer. Gds act as a T-cell inhibitor and are involved in inactivation of human monocytes. With a Gd peptide antibody, derived from a 15 amino acid sequence of human Gd and in situ hybridization experiments, the expression of Gd in serous, mucinous, endometrioid and clear cell ovarian tumors was identified. In contrast to former investigations with antibodies against GdA, a positive immunohistochemical reaction for Gd was observed in all forms of epithelium ovarian cancer. These results were confirmed with in situ hybridization. In addition, Gd is expressed in granulose cell tumors, a non-epithelial form of ovarian cancer. Furthermore, Gd was purified from ascites fluid of ovarian cancer patients. Ascites Gd showed significant differences in its structure of sialyl Lewis-type oligosaccharides compared to GdA. Additionally, ascites Gd inhibits IL-2 stimulated proliferation of peripheral blood leucocytes and inhibits adhesion of SLeX-positive cells to E-selectin. Therefore, Gd could act as an inhibitor of lymphocyte activation and/or adhesion in ovarian cancer. U. Jeschke, I. Mylonas and C. Kunert-Keil contributed equally to this work.  相似文献   

20.
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号