首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Callyspongiolide is a marine macrolide known to induce caspase-independent cancer cell death. While its toxic effects have been known, the mechanism leading to cell death is yet to be identified. We report that Callyspongiolide R form at C-21 (cally2R) causes mitochondrial dysfunction by inhibiting mitochondrial complex I or II, leading to a disruption of mitochondrial membrane potential and a deprivation of cellular energy. Subsequently, we observed, using electron microscopy, a drastic formation of autophagosome and mitophagy. Supporting these data, LC3, an autophagosome marker, was shown to co-localize with LAMP2, a lysosomal protein, showing autolysosome formation. RNA sequencing results indicated the induction of hypoxia and blocking of EGF-dependent pathways, which could be caused by induction of autophagy. Furthermore, mTOR and AKT pathways preventing autophagy were repressed while AMPK was upregulated, supporting autophagosome progress. Finally, the combination of cally2R with known anti-cancer drugs, such as gefitinib, sorafenib, and rapamycin, led to synergistic cell death, implicating potential therapeutic applications of callyspongiolide for future treatments.  相似文献   

2.
3.
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.  相似文献   

4.
Mitochondrial control of cell death   总被引:67,自引:0,他引:67  
In many instances, permeabilization of mitochondrial membranes is a rate-limiting step of apoptotic or necrotic cell demise. This has important consequences for the pathophysiology of cell death, as well as for its pharmacological control.  相似文献   

5.
Mitochondria are important organelles for energy production, Ca2+ homeostasis, and cell death. In recent years, the role of the mitochondria in both apoptotic and necrotic cell death has received much attention. In apoptotic and necrotic death, an increase of mitochondrial membrane permeability is considered to be one of the key events, although the detailed mechanism remains to be elucidated. The mitochondrial membrane permeability transition (MPT) is a Ca2+-dependent increase in the permeability of the mitochondrial membrane that leads to loss of Deltapsi, mitochondrial swelling, and rupture of the outer mitochondrial membrane. The MPT is thought to occur after the opening of a channel, which is termed the permeability transition pore (PTP) and putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), cyclophilin D (Cyp D: a mitochondrial peptidyl prolyl-cis, trans-isomerase), and other molecule(s). Our studies of mice lacking Cyp D have revealed that it is essential for occurrence of the MPT and that the Cyp D-dependent MPT regulates some forms of necrotic cell death, but not apoptotic death. We have also shown that two anti-apoptotic proteins, Bcl-2 and Bcl-x(L), block the MPT by directly inhibition of VDAC activity. Here we summarize a role of the MPT in cell death.  相似文献   

6.
7.
8.
Mitochondrial effectors in caspase-independent cell death   总被引:15,自引:0,他引:15  
Lorenzo HK  Susin SA 《FEBS letters》2004,557(1-3):14-20
Activation of caspases is recognized as a key element in the apoptotic process. However, new evidence is drawing attention to the emergent role of cell death pathways where caspases are not involved. Recent advances in the molecular understanding of these new ways to die, called caspase-independent, have revealed that mitochondria play an important role via the release of proapoptotic proteins. The purpose of this review is to integrate, from a biological and structural point of view, the most recent advances in the knowledge of the main mitochondrial proapoptotic proteins involved in this cell death cascade. The origin of programmed cell death is discussed through these strongly conserved effectors.  相似文献   

9.
Mitochondrial intermembrane proteins in cell death   总被引:26,自引:0,他引:26  
Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Mitochondria have, next to their function in respiration, an important role in the apoptotic-signaling pathway. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. Some of these factors, such as AIF and endonuclease G, appear to be highly conserved during evolution. Other factors, like cytochrome c, have gained their apoptogenic function later during evolution. In this review, we focus on the role of cytochrome c, AIF, endonuclease G, Smac/DIABLO, Omi/HtrA2, Acyl-CoA-binding protein, and polypyrimidine tract-binding protein in the initiation and modulation of cell death in different model organisms. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death.  相似文献   

10.
Leo S  Bianchi K  Brini M  Rizzuto R 《The FEBS journal》2005,272(16):4013-4022
The development of targeted probes (based on the molecular engineering of luminescent or fluorescent proteins) has allowed the specific measurement of [Ca2+] in intracellular organelles or cytoplasmic subdomains. This approach gave novel information on different aspects of cellular Ca2+ homeostasis. Regarding mitochondria, it was possible to demonstrate that, upon physiological stimulation of cells, Ca2+ is rapidly accumulated in the matrix. We will discuss the basic characteristics of this process, its role in modulating physiological and pathological events, such as the regulation of aerobic metabolism and the induction of cell death, and new insight into the regulatory mechanisms operating in vivo.  相似文献   

11.
Mitochondrial regulation of apoptotic cell death   总被引:8,自引:0,他引:8  
Mitochondria play a decisive role in the regulation of both apoptotic and necrotic cell death. Permeabilization of the outer mitochondrial membrane and subsequent release of intermembrane space proteins are important features of both models of cell death. The mechanisms by which these proteins are released depend presumably on cell type and the nature of stimuli. Of the mechanisms involved, mitochondrial permeability transition appears to be associated mainly with necrosis, whereas the release of caspase activating proteins during early apoptosis is regulated primarily by the Bcl-2 family of proteins. However, there is increasing evidence for interaction and co-operation between these two mechanisms. The multiple mechanisms of mitochondrial permeabilization may explain diversities in the response of mitochondria to numerous apoptotic stimuli in different types of cells.  相似文献   

12.
13.
Mitochondria play crucial roles in programmed cell death and aging. Different stimuli activate distinct mitochondrion-dependent cell death pathways, and aging is associated with a progressive increase in mitochondrial damage, culminating in oxidative stress and cellular dysfunction. Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to provide a mitochondrial quality control system and enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. The baker's yeast, Saccharomyces cerevisiae, is an established model for programmed cell death and aging research. The present review summarizes how mitochondrial morphology is altered on induction of cell death or on aging and how this correlates with the induction of different cell death pathways in yeast. We highlight the roles of the components of the mitochondrial fusion and fission machinery that affect and regulate cell death and aging.  相似文献   

14.
Heterogeneity in mitochondrial content has been previously suggested as a major contributor to cellular noise, with multiple studies indicating its direct involvement in biomedically important cellular phenomena. A recently published dataset explored the connection between mitochondrial functionality and cell physiology, where a non‐linearity between mitochondrial functionality and cell size was found. Using mathematical models, we suggest that a combination of metabolic scaling and a simple model of cell death may account for these observations. However, our findings also suggest the existence of alternative competing hypotheses, such as a non‐linearity between cell death and cell size. While we find that the proposed non‐linear coupling between mitochondrial functionality and cell size provides a compelling alternative to previous attempts to link mitochondrial heterogeneity and cell physiology, we emphasise the need to account for alternative causal variables, including cell cycle, size, mitochondrial density and death, in future studies of mitochondrial physiology.  相似文献   

15.
16.
17.
Contractile dysfunction and subsequent development of cardiomyopathies are well known limiting factors in the treatment of cancer with doxorubicin and have been linked to mitochondrial dysfunction. Here, using adult isolated paced cardiomyocytes, we have demonstrated that ligands of translocator protein (TSPO) 4′-chlorodiazepam and TRO40303 prevented the doxorubicin-induced alterations in contractility and improved cardiomyocyte viability. This cardioprotective effect was closely associated with both a potent reduction in reactive oxygen species production and inhibition of mitochondrial permeability transition pore opening. Thus, preventive administration of TSPO ligands may represent a novel pharmacological strategy to protect the heart during doxorubicin treatment.  相似文献   

18.
Whether or not yeast cell death is altruistic, apoptotic, or otherwise analogous to programmed cell death in mammals is controversial. However, growing attention to cell death mechanisms in yeast has produced several new papers that make a case for ancient origins of programmed death involving mitochondrial pathways conserved between yeast and mammals.  相似文献   

19.
Death receptors such as the 55 kDa tumor necrosis factor (TNF) receptor (TNF-R55) or Fas can initiate both apoptotic (caspase-dependent) and caspase-independent routes to programmed cell death (PCD). Here, we demonstrate for the first time that the single murine receptor for (TNF)-related apoptosis-inducing ligand (mTRAIL-R2) can induce a caspase-independent form of PCD with necrosis-like features in addition to apoptosis. Analysis of morphological and cellular features of caspase-independent PCD in response to TRAIL and TNF suggests that mTRAIL-R2 and TNF-R55 elicit caspase-independent PCD through similar pathways, although without participation of cathepsins. Cells overexpressing acid ceramidase (AC), an enzyme that metabolizes the sphingolipid ceramide, show enhanced survival from TRAIL-induced caspase-independent PCD but not from apoptosis, implicating a function of ceramide as a key mediator in caspase-independent PCD (but not apoptosis) induced by mTRAIL-R2. In concert with the enhanced resistance of AC-overexpressing cells against caspase-independent PCD induced by TNF, our results suggest that ceramide acts as a common mediator of caspase-independent PCD caused by death receptors such as mTRAIL-R2 and TNF-R55.  相似文献   

20.
Mitochondrial fusion and fission in cell life and death   总被引:1,自引:0,他引:1  
Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号