首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The genomes of all organisms contain an abundance of DNA repeats which are at-risk for causing genetic change. We have used the yeast Saccharomyces cerevisiae to investigate various repeat categories in order to understand their potential for causing genomic instability and the role of DNA metabolism factors. Several types of repeats can increase enormously the likelihood of genetic changes such as mutation or recombination when present either in wild type or mutants defective in replication or repair. Specifically, we have investigated inverted repeats, homonucleotide runs, and short distant repeats and the consequences of various DNA metabolism mutants. Because the at-risk motifs (ARMs) that we characterized are sensitive indicators, we have found that they are useful tools to reveal new genetic factors affecting genome stability as well as to distinguish subtle differences between alleles.  相似文献   

4.
5.
6.
SGS1 encodes a DNA helicase whose homologues in human cells include the BLM, WRN, and RECQ4 genes, mutations in which lead to cancer-predisposition syndromes. Clustering of synthetic genetic interactions identified by large-scale genetic network analysis revealed that the genetic interaction profile of the gene RMI1 (RecQ-mediated genome instability, also known as NCE4 and YPL024W) was highly similar to that of SGS1 and TOP3, suggesting a functional relationship between Rmi1 and the Sgs1/Top3 complex. We show that Rmi1 physically interacts with Sgs1 and Top3 and is a third member of this complex. Cells lacking RMI1 activate the Rad53 checkpoint kinase, undergo a mitotic delay, and display increased relocalization of the recombination repair protein Rad52, indicating the presence of spontaneous DNA damage. Consistent with a role for RMI1 in maintaining genome integrity, rmi1Delta cells exhibit increased recombination frequency and increased frequency of gross chromosomal rearrangements. In addition, rmi1Delta strains fail to fully activate Rad53 upon exposure to DNA-damaging agents, suggesting that Rmi1 is also an important part of the Rad53-dependent DNA damage response.  相似文献   

7.
Pif1 DNA helicase is the prototypical member of a 5′ to 3′ helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.  相似文献   

8.
Reactive oxygen species (ROS) have been implicated as one of the agents responsible for many neurodegenerative diseases. A critical target for ROS is DNA. Most oxidative stress-induced DNA damage in the nucleus and mitochondria is removed by the base excision repair pathway. Apn1 is a yeast enzyme in this pathway which possesses a wider substrate specificity and greater enzyme activity than its mammalian counterpart for removing DNA damage, making it a good therapeutic candidate. For this study we targeted Apn1 to mitochondria in a neuronal cell line derived from the substantia nigra by using a mitochondrial targeting signal (MTS) in an effort to hasten the removal of DNA damage and thereby protect these cells. We found that following oxidative stress, mitochondrial DNA (mtDNA) was repaired more efficiently in cells containing Apn1 with the MTS than controls. There was no difference in nuclear repair. However, cells that expressed Apn1 without the MTS showed enhanced repair of both nuclear and mtDNA. Both Apn1-expressing cells were more resistant to cell death following oxidative stress compared with controls. Therefore, these results reveal that the expression of Apn1 in neurons may be of potential therapeutic benefit for treating patients with specific neurodegenerative diseases.  相似文献   

9.
The phenomenology of genomic destabilization is described in Drosophila melanogaster mutants containing radiation-induced conditional dominant lethals in the X chromosome and in autosome 2. Destabilization manifests itself as (1) the loss or decrease of lethality of previously lethal mutations; (2) the loss of expression of visible dominant mutations in an opposite homolog; (3) chromosomal instability resulting in the loss of the X chromosome in germline and somatic cells; (4) the occurrence of novel mutations (secondary mutagenesis); (5) the occurrence of single and mass modifications; (6) disturbances in individual development (formation of morphoses). The key event for the shift of the genome from the stable state into the unstable one is the occurrence of a conditional dominant lethal mutation.  相似文献   

10.
Amin AD  Chaix AB  Mason RP  Badge RM  Borts RH 《PloS one》2010,5(11):e15380

Background

The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids.

Methodology/Principal Findings

In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination) and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of ‘second strand capture’ when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent) are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures.

Conclusions

This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout meiosis.  相似文献   

11.
Genomic instability is one of the major features of cancer cells. The clinical phenotypes associated with several human diseases have been linked to recurrent DNA rearrangements and dysfunction of DNA replication processes that involve unstable genomic regions. Analysis of these rearrangements, which are frequently submicroscopic and can lead to loss or gain of dosage-sensitive genes or gene disruption, requires the development of sensitive, high-resolution techniques. This will lead to a better understanding of the mechanisms underlying genome instability and a greater awareness of the role of chromosomal rearrangements in disease. A new technology that involves molecular combing, a method that permits straightening and aligning molecules of genomic DNA, should make possible a detailed analysis of genomic events at the level of single DNA molecules. Such a single molecule approach could help to elucidate important properties that are masked in bulk studies.  相似文献   

12.
Homologous recombination (HR) is essential for faithful repair of DNA lesions yet must be kept in check, as unrestrained HR may compromise genome integrity and lead to premature aging or cancer. To limit unscheduled HR, cells possess DNA helicases capable of preventing excessive recombination. In this study, we show that the human Fbh1 (hFbh1) helicase accumulates at sites of DNA damage or replication stress in a manner dependent fully on its helicase activity and partially on its conserved F box. hFbh1 interacted with single-stranded DNA (ssDNA), the formation of which was required for hFbh1 recruitment to DNA lesions. Conversely, depletion of endogenous Fbh1 or ectopic expression of helicase-deficient hFbh1 attenuated ssDNA production after replication block. Although elevated levels of hFbh1 impaired Rad51 recruitment to ssDNA and suppressed HR, its small interfering RNA–mediated depletion increased the levels of chromatin-associated Rad51 and caused unscheduled sister chromatid exchange. Thus, by possessing both pro- and anti-recombinogenic potential, hFbh1 may cooperate with other DNA helicases in tightly controlling cellular HR activity.  相似文献   

13.
14.
15.
16.
The Saccharomyces cerevisiae genome sequence, augmented by new data on gene expression and function, continues to yield new findings about eukaryote genome evolution. Analysis of the duplicate gene pairs formed by whole-genome duplication indicates that selection for increased levels of gene expression was a significant factor determining which genes were retained as duplicates and which were returned to a single-copy state, possibly in addition to selection for novel gene functions. Proteome comparisons between worm and yeast show that genes for core metabolic processes are shared among eukaryotes and unchanging in function, while comparisons between different yeast species identify 'orphan' genes as the most rapidly evolving fraction of the proteome. Natural hybridisation among yeast species is frequent, but its long-term evolutionary significance is unknown.  相似文献   

17.
18.
WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres.  相似文献   

19.
For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown that the minimum number of genes from each species that need to be compared to produce a reliable phylogeny is about 20. Yeast has also become an attractive model to study speciation in eukaryotes, especially to understand molecular mechanisms behind the establishment of reproductive isolation. Comparison of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide the background to use more yeast species in model studies, to combat pathogens and for efficient manipulation of industrial strains.  相似文献   

20.
The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号