首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myrmecophytic symbioses are widespread in tropical ecosystems and their diversity makes them useful tools for understanding the origin and evolution of mutualisms. Obligate ant–plants, or myrmecophytes, provide a nesting place, and, often, food to a limited number of plant–ant species. In exchange, plant–ants protect their host plants from herbivores, competitors and pathogens, and can provide them with nutrients. Although most studies to date have highlighted a similar global pattern of interactions in these systems, little is known about the temporal structuring and dynamics of most of these associations. In this study we focused on the association between the understory myrmecophyte Hirtella physophora (Chrysobalanaceae) and its obligate ant partner Allomerus decemarticulatus (Myrmicinae). An examination of the life histories and growth rates of both partners demonstrated that this plant species has a much longer lifespan (up to about 350 years) than its associated ant colonies (up to about 21 years). The size of the ant colonies and their reproductive success were strongly limited by the available nesting space provided by the host plants. Moreover, the resident ants positively affected the vegetative growth of their host plant, but had a negative effect on its reproduction by reducing the number of flowers and fruits by more than 50%. Altogether our results are important to understanding the evolutionary dynamics of ant–plant symbioses. The highly specialized interaction between long-lived plants and ants with a shorter lifespan produces an asymmetry in the evolutionary rates of the interaction which, in return, can affect the degree to which the interests of the two partners converge.  相似文献   

2.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

3.
Most social animals have mechanisms to distinguish group members from outsiders, in part to prevent the exploitation of resources reserved for members of the group. Nevertheless, specialized thieves of the Neotropical ant, Ectatomma ruidum, also known as the ‘thieving ant’, regularly enter and steal resources from distinct, neighboring colonies. Here, we examine the mechanisms and consequences of thievery in a population of E. ruidum. We show that (1) individuals from nearby colonies were accepted more often than those from farther colonies; (2) rejection rates decreased as individuals interacted more with non‐nestmates from the same source colony; and (3) colonies that were experimentally treated to reduce thievery rates had improved productivity. The boost in productivity with thievery reduction was greater in low density populations than in high density populations. We conclude that, as in other species, thievery has negative fitness costs to E. ruidum. However, greater acceptance of neighbors than non‐neighbors and increased acceptance after habituation to non‐nestmates suggest a proximate explanation for the presence of thievery. Moreover, lower fitness costs of thievery at high nesting density, combined with observations of extraordinarily high densities of E. ruidum throughout its range, suggest there is little selection pressure among these ants to guard against thieves, thus providing an ultimate explanation why thievery persists among litter‐foraging ants.  相似文献   

4.
Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to “byproduct benefits” stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants) can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced). The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher δ15N values (confirming myrmecotrophy), plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches) and fitness (i.e., more fruits produced and more flowers that matured into fruit). This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms.  相似文献   

5.
1. Plant communities influence the availability of important resources for ants, such as nest sites and food, as well as environmental conditions. Thus, plants affect the abundance and distribution of ants. 2. In a field experiment, the influence of plant cover on the settlement of nest sites and per‐capita productivity of sexual individuals by the ant Temnothorax crassispinus was analysed. In July 2014, in five areas with patches of alien balsam Impatiens parviflora, and another five of native balsam I. noli‐tangere, transects composed of artificial nests were established; the nest sites were situated inside patches of balsams, and outside of them. Four hundred and forty artificial nests were used. One year later, the nests were collected. 3. Colonies of the ants three times more often inhabited nest sites outside the patches of both balsams. Besides, colonies with queens were more frequently found in nest sites located away from balsams. The per‐capita productivity of sexual individuals was higher in nests collected in patches of balsam, and the colonies from patches of alien balsam produced a more female‐biased sex ratio. 4. In terms of the impact on the ant, no clear differences were found between the alien balsam and the native one. The most important factor affecting the fitness of ants in areas dominated by balsams is the presence of herbaceous plant cover rather than whether the plant is alien or native.  相似文献   

6.
The effects of herbivory on plant fitness are integrated over a plant??s lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant?Cplant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant??s growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.  相似文献   

7.
Chimpanzees in the Mahale Mountains of Tanzania consume several species of stem- and branch-inhabiting ants throughout the year, without tools. Those ants are cryptic species, and it was unknown how to find them constantly. There has been little research on how the chimpanzees locate these ants. In this study, I use behavioral observations of the chimpanzee predators and surveys of the ant fauna and plants across different habitats to test the hypothesis that chimpanzees use plant species as a cue to efficiently locate ant colonies in litter units (dead parts of the plant). Ants were found to be associated with live plants and with spaces within litter units which provide nesting places. Such ant–plant litter relationships were not necessarily as strong as the mutualism often observed between live plants and ants. The proportion of available litter units inhabited by ants was 20 %, and litter units of three plant species (Vernonia subligera, Dracaena usambarensis, and Senna spectabilis) were well occupied by ants in the home range of the chimpanzees. The ant-inhabited ratio in chimpanzee-foraged litter units was higher than that in the available units in the home range. Chimpanzees fed more often on Crematogaster spp. than on other resident ants and at a higher rate than expected from their occurrence in the litter units. Above three plant species were well occupied by Crematogaster sp. 3 or C. sp. 18. It is concluded that chimpanzees locate ants by selecting litter units of plant species inhabited by ants.  相似文献   

8.
Myrmica ants have been model species for studies in a variety of disciplines, including insect physiology, chemical communication, ant social dynamics, ant population, community ecology, and ant interactions with other organisms. Species belonging to the genus Myrmica can be found in virtually every habitat within the temperate regions of the northern hemisphere and their biology and systematics have been thoroughly studied. These ants serve as hosts to highly diverse parasitic organisms from socially parasitic butterfly caterpillars to microbes, and many Myrmica species even evolved into parasitizing species of their own genus. These parasites have various impacts both on the individuals and on the social structure of their hosts, ranging from morphological malformations to reduction in colony fitness. A comprehensive review of the parasitic organisms supported by Myrmica and the effects of these organisms on individuals and on whole ant colonies has not yet been compiled. Here, we provide a review of the interactions of these organisms with Myrmica ants by discussing host and parasite functional, behavioral or physiological adaptations. In addition, for all “symbiont groups” of Myrmica ants described in this paper, we examine the present limitations of the knowledge at present of their impact on individuals and host colony fitness. In conclusion, we argue that Myrmica ants serve as remarkable resource for the evolution of a wide variety of associated organisms.  相似文献   

9.
《Flora》2014,209(5-6):244-249
Plants and ants have widespread relationships that are commonly mediated by the offer of extrafloral nectar (EFN) to ants that protect plants against herbivores. However, these ant–plant interactions are highly facultative and vary in time and space, mainly depending on the characteristics of the ant species, such as density and aggressiveness. In general, the outcomes of these relationships are positive, but in some cases, the presence of ants is neutral or negative to plants. Some studies suggest that aggressive attacks or merely the presence of ants might reduce the visitation rate of insect pollinators, such as bees, to flowers. We used experimental manipulation in natural conditions to test the hypothesis that ants on flowers of EFN-bearing plants might be recognized as a danger by pollinators (bees) and reduce the plant fitness (fruit-set). Our results show that the avoidance that ant bodyguard species feeding on EFNs of the Malpighiaceae Heteropterys pteropetala cause in pollinators, is not enough to decrease plant fruit-set. However, ants were indeed identified as a danger to pollinators as hypothesized and as suggested for other plant–pollinator relationships: flowers with plastic ants placed on the petals produced significantly fewer fruits than other treatments (using instead a plastic circle) or the control (natural condition). Indirect costs of facultative mutualisms are the focus of few studies and have been performed only rarely in the Neotropics; our results show that mutualism must be considered in multitrophic interactions studies for a better understanding of the functioning of the system.  相似文献   

10.
1. Ants are among the most abundant terrestrial organisms, yet little is known of how ant communities divide resources because it is difficult to measure the number of individuals in colonies and the density of colonies. 2. The body size–abundance relationships of the ants of five upland ecosystems in Florida were examined. The study tested whether abundance, energy use, and total biomass were distributed among species and body sizes as predicted by Damuth's energetic equivalence rule. Estimates of average worker body size, colony size, colony mass, and field metabolic rates were used to examine the relationships among body sizes, energy use, and total biomass. 3. Analyses revealed significant variation in energy use and did not support the energetic equivalence hypothesis. Specifically, the energy use and total standing biomass of species with large workers and colonies was much greater than smaller species. 4. These results suggest that larger species with larger colonies account for a disproportionate fraction of the total abundance and biomass of ants. A general model of resource allocation in colonies provides a possible explanation for why ants do not conform to the predictions of the energetic equivalence rule and for why ants are so abundant.  相似文献   

11.
Numerous ant taxa naturally inhabit stems of live and dead Guadua bamboo (Bambusoidea, Poaceae) in western Amazonia. In an experiment at the onset of the wet season in Peru’s Manu National Park, we augmented potential nest sites in stems of live bamboo, dead bamboo and dead ca?a brava (Gynerium sagittatum, another woody grass) at five stations within each of ten bamboo patches and ten control areas outside those patches. Each experimental stem possessed three vacant and available internodes, pre-drilled with, respectively, large, small and linear holes, mimicking the range of forms of surveyed natural entrances. After 24 days, approximately 13% of 798 available internodes had been colonized, the majority by fragments of existing colonies. Ignoring entrance type, which did not affect colonization for any species or species group, and censoring non-independent internodes of the same stem, we used individual stems as independent sample units in other tests. One specialist in live bamboo (Camponotus longipilis), and a likely specialist in dead bamboo (Camponotus depressus), were identified based on overrepresentation in bamboo habitat and disproportionate occurrence in live or dead bamboo stems. A third species, Camponotus (Pseudocolobopsis sp.) was more abundant in bamboo areas but colonized both dead bamboo and dead ca?a. Relatively high abundance of standing dead stems in Guadua forests may account for the presence of a dead stem specialist. The experiment missed detecting specialization in one live culm specialist (Camponotus mirabilis), likely due to its failure to simulate conditions required for the species’ unique modes of colony establishment and spread into new culms. Most opportunistic stem nesters colonized dead bamboo at significantly greater rates than dead ca?a, but were either equally well represented in bamboo and control areas, or underrepresented in bamboo habitat. Given low colonization rates overall, underrepresentation in bamboo cannot be attributed to competition from bamboo specialists for nesting space. Rather, it may be due to combined effects of seasonal flooding of bamboo habitat, and greater importance of food limitation, relative to nest site limitation, in that habitat. Received 9 May 2005; revised 25 August 2005; accepted 29 August 2005.  相似文献   

12.
Females of social Hymenoptera show developmental plasticity in response to varying social and environmental conditions, though some species have strong genetic influences on the form of the female reproductives. In ants, a queen polymorphism can occur in which large queens initiate new colonies on their own, while small queens enter established nests. Most queen polymorphisms studied to date originate due to genetic differences between individuals of differing form. Here, we report on the development of female form in response to social factors within the nest in the queen-polymorphic ant Temnothorax longispinosus. Three queen size morphs occur: a rare large queen with higher fat stores that can found new colonies independently, a large queen that has low fat stores and is behaviorally flexible, and a small queen that rejoins the natal nest. Both in nesting units collected from the field and those reared in the lab, queen presence during larval development led to fewer larvae developing as gynes (virgin, winged queens), and most of those gynes were the small morph. This queen effect is transferred to developing gyne larvae by close, physical interaction between queens and workers, and causes slower larval development. We conclude that gyne size, and therefore reproductive behavior, in T. longispinosus is developmentally plastic in response to queen presence. Plasticity in reproductive behavior may be an adaptive response to the nest sites utilized by this species. T. longispinosus nests predominantly in acorns and hickory nuts, which can vary dramatically from 1 year to the next. Since queens are more likely to be present in each nesting unit when fewer nest sites are available, the queen effect that results in more small gynes produced links the expression of colony-founding traits to ecological conditions across habitat patches.  相似文献   

13.
Obligate ant–plant interactions are known to be mutualistic but plant-ants that destroy flowers of their hosts have been reported. They were regarded as parasites in myrmecophytic systems. The mechanisms that lead to flower damage (sterilization) by plant-ants are not easy to understand as most sterilizing ants are actually regular colonizers of their plants and normally offer protection against herbivores and/or plant competition. It is difficult to find general patterns of ant or plant traits even in the few yet known associations of flower sterilization. We here present the first study from Southeast Asia where flower sterilizing occurs in the complex mutualistic MacarangaCrematogaster system that differs from other cases. Flowers of M. hullettii in the Gombak Valley were destroyed by all three associated specific and otherwise protective Crematogaster species. The hypotheses that limitation of nesting space or food are main proximate factors for flower destruction were not strongly supported in our study system. Ants are even attracted to flowers by special food bodies produced by the plants. Only younger, not yet reproductive colonies were found to destroy flowers but not colonies with alates, indicating that flower sterilization behavior may only occur when the onset of host reproduction precedes ant reproduction, perhaps leading to a change in ant behavior. Fruit set always occurred in larger trees, and saplings for colonizing ant queens were therefore always present in the local population, stabilizing the association.  相似文献   

14.
Field studies investigating the impact of ants on the reproduction of plants bearing extrafloral nectaries have traditionally focused on seed production, a component of female fitness. The purpose of this study was to test whether ants can affect the pollen viability, a component of male fitness, when they visit flowers of the shrub Acacia constricta. Acacia constricta inflorescences hand-pollinated with flowers over which Formica perpilosa ants had crawled set significantly fewer seed pods than inflorescences hand-pollinated by control flowers that had no contact with ants. Many ant species secrete antibiotic substances onto the integument that render pollen inviable, and these secretions are probably the mechanism for reduced pollen viability in this study. The ratio of seed pods produced by self-pollinated inflorescences to those produced by cross-pollinated inflorescences was 0.16, indicating that A. constricta is largely self-incompatible. Because F. perpilosa workers forage primarily on the acacia tree under which they nest, they are unlikely to serve as efficient vectors of outcrossing. Previous work showed that A. constricta shrubs with F. perpilosa ants produce approximately twice as many seeds as similarly sized plants not so associated. The results indicate that association with F. perpilosa could cause a reproductive trade-off for A. constricta: benefits to female function may be accompanied by costs to male function. Selection to discourage ant visitation to flowers may have affected the pollination biology of this and other ant-associated plant species.  相似文献   

15.
Mutualism can evolve when organisms make novel connections that happen to benefit all parties. When such connections involve a host that provides a public good for multiple visitor species, selection for reciprocal cooperation is only likely if the host has the power to preferentially increase the fitness of those visitors that provide a better quality service. In contrast, when interactions form between multiple visitors and a host that lacks the power to partition the public good, we predict that interactions are likely to persist only as by‐product mutualisms, in which symbiosis benefits both host and visitor, but in which neither partner makes costly investments. Focusing on the symbiosis between ants and litter trapping epiphytes in the canopy of lowland dipterocarp rain forest in Borneo, we show that at least 71 ant species share the public good of housing within the root‐mass of epiphytic bird's nest ferns (Asplenium spp.). Ferns supporting a higher biomass of ants experienced less herbivory, and experimental exclusions of ants from fronds confirmed that this is caused by the ants protecting the ferns from herbivores. These results establish that there are clear by‐product benefits for both parties of housing for ants and protection for ferns. If these benefits were to drive selection for reciprocal cooperation, we would expect larger ferns to support ant colonies that were larger or colonies that produce more reproductive individuals. This was not the case. Larger ferns instead supported more ant colonies, indicating that the housing provided by the fern is a public good that is not restricted to better cooperating ant species. Mutualism via novel connections is thus unlikely to evolve between a host and multiple partners, even if there are clear by‐product benefits to all parties, unless the host can direct benefits to cooperators.  相似文献   

16.
Haemig 《Ecology letters》1999,2(3):178-184
Although interactions between species are often assumed to be fixed, theory and empirical evidence suggest that they may be quite variable, changing in the presence of other species or environmental conditions. The interaction between ants and nesting birds exhibits such variability, ants sometimes being predators of bird nests and other times protectors of them. Hypothesizing that predation risk might be a critical factor in altering the interaction of ants with birds, I investigated the interaction of wood ants Formica aquilonia with nesting birds under different levels of predation risk. In a controlled field experiment, I allowed tits ( Parus major, P. caeruleus, P. ater ) and pied flycatchers ( Ficedula hypoleuca ) to select nest boxes in trees with ants (ant trees) or trees without ants. I found that birds usually nested in trees without ants, apparently to avoid the danger of injury from encounters with ants. Nesting in ant trees occurred mainly in the habitat where risk of predation was highest (along the forest edge), and with the bird taxa that lost nests most frequently in trees without ants (tits). Tits nesting on the forest edge achieved significantly greater nesting success, and fledged significantly more young, in ant trees compared with trees without ants. As the season progressed, ant traffic increased in trees without nesting birds, but decreased in trees with nesting birds, indicating that the outcome of interference competition between ants and nesting birds was reversed under increased predation risk. These results support the idea that predation risk can shift species interactions from predominately competitive processes to predominately facilitative processes.  相似文献   

17.
New associations have recently been discovered between arboreal ants that live on myrmecophytic plants, and different groups of fungi. Most of the – usually undescribed – fungi cultured by the ants belong to the order Chaetothyriales (Ascomycetes). Chaetothyriales occur in the nesting spaces provided by the host plant, and form a major part of the cardboard-like material produced by the ants for constructing nests and runway galleries. Until now, the fungi have been considered specific to each ant species. We focus on the three-way association between the plant Tetrathylacium macrophyllum (Salicaceae), the ant Azteca brevis (Formicidae: Dolichoderinae) and various chaetothyrialean fungi. Azteca brevis builds extensive runway galleries along branches of T. macrophyllum. The carton of the gallery walls consists of masticated plant material densely pervaded by chaetothyrialean hyphae. In order to characterise the specificity of the ant–fungus association, fungi from the runway galleries of 19 ant colonies were grown as pure cultures and analyzed using partial SSU, complete ITS, 5.8S and partial LSU rDNA sequences. This gave 128 different fungal genotypes, 78% of which were clustered into three monophyletic groups. The most common fungus (either genotype or approximate species-level OTU) was found in the runway galleries of 63% of the investigated ant colonies. This indicates that there can be a dominant fungus but, in general, a wider guild of chaetothyrialean fungi share the same ant mutualist in Azteca brevis.  相似文献   

18.
In young individuals of the obligate myrmecophytic liana Vitex thyrsiflora, several species of ants and other arthropods compete for resources offered by the plant. In mature individuals, the only inhabitant is the ant species Tetraponera tessmanni, which is completely restricted to Vitex lianas as its sole host. Established colonies of this ant provide effective defense against herbivores. The association between V. thyrsiflora and T. tessmanni is unusual in two respects. First, the climbing life form is rare among myrmecophytes. Secondly, it is surprising that a pseudomyrmecine should be the obligate associate of a liana. Pseudomyrmecine plant‐ants often prune vegetation contacting their host plant. This behavior functions in part to protect against invasion of the host by ecologically dominant ants. In contrast, T. tessmanni does not prune and is associated with a plant whose success, and thus that of its resident ant colony, depends on contacts with many other plants. Several traits of V. thyrsiflora and T. tessmanni combine to make the colonization of host plants by potential competitors very difficult. These include behavioral and morphological filters restricting entrance into the plant and exploitation of the resources it can supply; plant anatomical organization that enables T. tessmanni workers to carry out all activities, except leaf patrolling, within a single, branched private nesting space within which all food resources offered by the plant are produced; and polygyny, permitting the colony to monopolize a large, rapidly growing and long‐lived territory.  相似文献   

19.
Abstract  Polyrhachis ants represent one of the most taxonomically and ecologically diverse ant genera, with over 500 described species organised into 12 subgenera. Nesting habits range from subterranean localities to arboreal nests incorporating silk produced by the ants' own larvae (nest weaving). In this article, we combine scanning electron microscopy and gross observations of the nests of 35 species representing nine subgenera thought to contain individuals that nest above the ground (Cyrtomyrma, Hagiomyrma, Hedomyrma, Hemioptica, Myrma, Myrmatopa, Myrmhopla, Myrmothrinax, Polyrhachis) to revaluate the relationship between nest locale, the type of nest material used and the use of larval silk for nest construction. Nesting habits are highly diverse, ranging from truly arboreal nests on or between leaves and branches, to lignicolous nests inside hollow stems or bamboo internodes and lithocolous nests on the sides of rock walls. Flat sheets of larval silk are used only by arboreal nesting species within the subgenera Cyrtomyrma , Hemioptica , Myrma , Myrmatopa , Myrmothrinax and Polyrhachis . Lignicolous nesting habits were demonstrated predominantly by Hedomyrma spp., but these habits also occur in Myrma and Myrmhopla . Lithicolous nesting habits occur within Hagiomyrma and Hedomyrma , though the actual nesting material used can be either carton or dense masses of spider silk. Based on existing phylogenetic hypotheses, the use of larval silk for nest construction has evolved independently within the genus, and has evolved independently of the construction of silk nests per se . Further examination of the exact type of silk found in the colonies of 'nest-weaving' Polyrhachis is warranted.  相似文献   

20.
Five Cecropia tree species occupied by four Azteca ant species from Costa Rica and French Guiana were investigated to assess the diversity and host specificity of chaetothyrialean fungal symbionts. The ITS rDNA region of the symbiotic fungi was sequenced either from pure culture isolation, or from environmental samples obtained from ant colonies nesting in hollow stems of the Cecropia host plants. The investigation revealed six closely related OTUs of Chaetothyriales. Neither the four Azteca species nor the six fungal OTUs were associated with specific Cecropia species. In contrast, ants and fungi showed an association. Azteca alfari was associated with a particular OTU, and often contained only one. Azteca coeruleipennis, Azteca constructor and Azteca xanthochroa were associated with a different set of OTUs and often had multiple OTUs within colonies. Possible reasons for these differences and the role of the fungi for the Azteca-Cecropia symbiosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号