首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonviral vector based gene delivery approach is attractive due to advantages associated with molecular-level modifications suitable for optimization of vector properties. In a new class of nonviral gene delivery systems, we herein report the potential of poly(ether imine) (PETIM) dendrimers to mediate an effective gene delivery function. PETIM dendrimer, constituted with tertiary amine branch points, n-propyl ether linkers and primary amines at their peripheries, exhibits significantly reduced toxicities, over a broad concentration range. The dendrimer complexes pDNA effectively, protects DNA from endosomal damages, and delivers to the cell nucleus. Gene transfection studies, utilizing a reporter plasmid pEGFP-C1 and upon complexation with dendrimer, showed a robust expression of the encoded protein. The study shows that PETIM dendrimers are hitherto unknown novel gene delivery vectors, combining features of poly(ethylene imine)-based polymers and dendrimers, yet are relatively nontoxic and structurally precise.  相似文献   

2.
Spatial control over the distribution and the aggregation of arginine-glycine-aspartate (RGD) peptides at the nanoscale significantly affects cell responses. For example, nanoscale clustering of RGD peptides can induce integrins to cluster, thus triggering complete cell signaling. Dendrimers have a unique, highly branched, nearly spherical and symmetrical structure with low polydispersity, nanoscale size, and high functionality. Therefore, dendrimers are a class of ideal scaffold for construction of nanoscale dendritic RGD clusters in which RGD loading degree and cluster size can be finely adjusted. This new type of nanoscale dendritic RGD cluster will aid us to better understand the impact of spatial arrangement of RGD on cellular responses and to engineer RGD to trigger more favorable cellular responses. In this study, nanoscale dendritic RGD clusters were synthesized based on Starburst anionic G3.5 and cationic G4.0 polyamidoamine (PAMAM) dendrimers. The multiple terminal functional groups on the outermost layer of the dendrimer were coupled with RGD tripeptides. Biofunctionalized dendrimer structures were found to be highly dependent on the generation and the extent of peptide modification (ie, number of peptides per PAMAM dendrimer). Fluorescein isothiocyanate (FITC)-conjugated PAMAM dendrimers were utilized to monitor cellular internalization of dendrimers by adherent fibroblasts. Anionic G3.5-based dendritic RGD clusters have been shown to have no negative effect on fibroblast viability and a concentration-dependent effect on lowering cell adhesion on tissue culture polystyrene (TCPS) as that of free RGD. A similar concentration-dependent effect in cell viability and adhesion was also observed for cationic G4.0-based dendritic RGD clusters at lower but not at high concentrations. The results imply that the synthesized nanoscale dendritic RGD clusters have great potential for tissue engineering and drug delivery applications.  相似文献   

3.
To improve gene transfer activity of a new nonviral vector, a polyamidoamine dendrimer (G2) conjugate with alpha-cyclodextrin (alpha-CDE conjugate (G2)), we prepared alpha-CDE conjugates with dendrimer having different generations (G3 and G4), and their gene transfer activities were compared with those of alpha-CDE conjugate (G2) and TransFast, a novel transfection reagent. alpha-CDE conjugates (G2, G3, and G4) formed the complexes with pDNA, changing the zeta-potential and particle size of pDNA complexes and the protection of pDNA from DNase I in a charge ratio-dependent manner, although their differences at higher charge ratios (vector/pDNA) were small. The gene transfer activity of alpha-CDE conjugates (G2, G3, and G4) was higher than that of the corresponding dendrimer alone in NIH3T3 and RAW264.7 cells. Of these CDE conjugates, alpha-CDE conjugate (G3) had a superior gene transfer activity which was comparable to that of TransFast in NIH3T3 cells. The intracellular distribution of pDNA after application of the pDNA complex with alpha-CDE conjugate (G3) to NIH3T3 cells was different from that with dendrimer alone (G3), although the cellular association of pDNA was almost comparable among all vectors. alpha-CDE conjugate (G3) strongly interacted with a fluorescence probe, 2-(p-toluidinyl)-naphthalene-6-sulfonate (TNS), suggesting that the conjugate possesses the inclusion ability with biomembrane constituents such as phospholipids after transfection. These results suggest that alpha-CDE conjugates, particularly the G3 conjugate, could be novel nonviral gene transfer agents.  相似文献   

4.
This study aimed to investigate the feasibility of using a cationic nonviral gene carrier in endothelial cells for enhancing gene expression by the addition of an integrin-binding RGD peptide. A 4-branched cationic polymer of poly( N,N-dimethylaminopropylacrylamide) (star vector), developed as a gene carrier, could complex with the luciferase-encoding plasmid DNA under a charge ratio of 5 (vector/pDNA) to form polymer/DNA complexes (polyplexes). The addition of the RGD-containing peptide (GRGDNP) to the polyplex solution led to a decrease in the zeta-potential from ca. +30 to +20 mV along with the reduction in the particle size from ca. 300 to 200 nm. Additionally, a marked inhibition of polyplex aggregation was observed, indicating the coating of the polyplex surface with RGD peptides. A transfection study on endothelial cells showed that the luciferase activity increased with the amount of RGD peptides added to the polyplexes and exhibited minimal cellular cytotoxicity. The transfection activity further increased when cyclic RGD peptides (RGDFV) were used; the activity with RGD peptide addition was approximately 8-fold compared to that without RGD peptide addition. Gene delivery to endothelial cells was significantly enhanced by only the addition of RGD peptides to star vector-based polyplexes.  相似文献   

5.
Asymmetrical lysine dendrimers are promising as vectors for delivering gene expression constructs into mammalian cells. The condensing, protective, and transfection properties were studied for pentaspherical lysine dendrimer D5 and its analog D5C10, modified with capric acid residues at the outer sphere; in addition, the transfection activity was assayed for complexes DNA-dendrimer-endosomolytic peptide JTS-1. Fatty acid residues incorporated in lysine dendrimers proved to improve their ability to bind DNA, to protect DNA from nuclease degradation, and to ensure its transfer into the nucleus. Peptide JTS-1 introduced in DNA-dendrimer complexes significantly increased their transfection activity. The potentiating effect of JTS-1 was especially high with the DNA-D5C10 complex. An excess of JTS-1 changed the structure of the complexes and reduced their transfection activity. It was assumed that dendrimers D5 and D5C10 are promising vectors for DNA delivery to eukaryotic cells and provide a basis for constructing more refined nonviral module carriers.  相似文献   

6.
The purpose of the present study is to optimize the structure of the polyamidoamine starburst dendrimer (dendrimer) conjugate with alpha-cyclodextrin (alpha-CDE conjugate) as a nonviral vector. alpha-CDE conjugates of dendrimer (generation 3, G3) with various average degrees of substitution (DS) of alpha-CyD of 1.1, 2.4, and 5.4 were prepared. alpha-CDE conjugates formed the complexes with pDNA, resulting in a change of the particle sizes of pDNA complexes, but the distinction of physicochemical properties among their vector/pDNA complexes was only very slight. The membrane-disruptive ability of alpha-CDE conjugates on liposomes encapsulating calcein and their cytotoxicity to NIH3T3 and HepG2 increased with an increase in the DS value of alpha-CyD. In vitro gene transfer activity of alpha-CDE conjugates in both NIH3T3 and HepG2 cells augmented as the charge ratio (vector/pDNA) increased, and the activity of alpha-CDE conjugate (DS 2.4) was the highest at higher charge ratios among dendrimer (G3), the three alpha-CDE conjugates, and TransFast. After intravenous administration of pDNA complexes in mice, alpha-CDE conjugate (DS 2.4) delivered pDNA more efficiently in spleen, liver, and kidney, compared with dendrimer and other alpha-CDE conjugates (DS 1.1 and 5.4). The potential use of alpha-CDE conjugate (G3, DS 2.4) could be expected as a nonviral vector in vitro and in vivo, and these data may be useful for design of alpha-CyD conjugates with other nonviral vectors.  相似文献   

7.
采用高分子介导精子作载体制备转基因泥鳅   总被引:5,自引:0,他引:5  
杨凯  程汉华  郭一清  周荣家 《遗传学报》2001,28(12):1137-1141
为探讨树形高分子介导精子载体技术产生转基因动物,将泥鳅精子与具有标记基因LacZ的pCH110重组质粒和树形高分子在保存液内孵育,经DNA原位杂交检测发现树形高分子介导下精子携事外源DNA的效率得到较大的提高,将捕获了外源DNA的精子,再与泥鳅卵进行体外人工受精。由此发育的鱼苗经PCR和LacZ组织化学检测,获得了高比例的转基因泥鳅,外源基因LacZ在泥鳅幼苗头部得到了明显表达。  相似文献   

8.
Collagen, which is used as a biomaterial, is the most abundant protein in mammals. We have previously reported that a dendrimer modified with collagen model peptides, (Gly‐Pro‐Pro)5, formed a collagen‐like triple‐helical structure, showing thermal reversibility. In this study, various collagen‐mimic dendrimers of different generations and at different binding ratios were synthesized, to investigate the relationship between the peptide clustering effect and the higher order structure formation. The formation of the higher order structure was influenced by the binding ratios of the peptide to the dendrimer, but was not influenced by the dendrimer generation. A spacer, placed between the dendrimer terminal group and the peptide, negatively contributed to the formation of the higher order structure. The collagen model peptides were also attached to poly(allylamine) (PAA) and poly‐L ‐lysine (poly(Lys)) to compare them with the collagen‐mimic dendrimers. The PAA‐based collagen‐mimic compound, bearing more collagen model peptides than the dendrimer, exhibited a thermally stable higher order structure. In contrast, this was not observed for the collagen‐mimic polymers based on poly(Lys). Therefore, dendrimers and vinyl polymers act as a scaffold for collagen model peptides and subsequently induce higher order structures. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 640–648, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature‐sensitive biomacromolecule. Previously, Val‐Pro‐Gly‐Val‐Gly peptides have been conjugated to a dendrimer for designing an elastin‐mimetic dendrimer. In this study, various elastin‐mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin‐mimetic dendrimers formed β‐turn structure by heating, which was similar to the elastin‐like peptides. The elastin‐mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin‐mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin‐mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin‐mimetic dendrimer. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 603–612, 2014.  相似文献   

10.
Surface modification of amine-terminated polyamidoamine (PAMAM) dendrimers by poly(ethylene glycol) (PEG) groups generally enhances water-solubility and biocompatibility for drug delivery applications. In order to provide guidelines for designing appropriate dendritic scaffolds, a series of G3 PAMAM-PEG dendrimer conjugates was synthesized by varying the number of PEG attachments and chain length (shorter PEG 550 and PEG 750 and longer PEG 2000). Each conjugate was purified by size exclusion chromatography (SEC) and the molecular weight (MW) was determined by (1)H NMR integration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). NOESY experiments performed in D 2O on selected structures suggested no penetration of PEG chains to the central PAMAM domain, regardless of chain length and degree of substitution. CHO cell cultures exposed to PAMAM-PEG derivatives (< or =1 microM) showed a relatively high cell viability. Generally, increasing the degree of PEG substitution reduced cytotoxicity. Moreover, compared to G3 PAMAM dendrimers that were N-acetylated to varying degrees, a lower degree of surface substitution with PEG was needed for a similar cell viability. Interestingly, when longer PEG 2000 was fully incorporated on the surface, cell viability was reduced at higher concentrations (32 muM), suggesting increased toxicity potentially by forming intermolecular aggregates. A similar observation was made for anionic carboxylate G5.5 PAMAM dendrimer at the same dendrimer concentration. Our findings suggest that a lower degree of peripheral substitution with shorter PEG chains may suffice for these PAMAM-PEG conjugates to serve as efficient universal scaffolds for drug delivery, particularly valuable in relation to targeting or other ligand-receptor interactions.  相似文献   

11.
Starburst polyamidoamine (PAMAM) dendrimers are a new type of synthetic polymer characterized by a branched spherical shape and a high density surface charge. We have investigated the ability of these dendrimers to function as an effective delivery system for antisense oligonucleotides and 'antisense expression plasmids' for the targeted modulation of gene expression. Dendrimers bind to various forms of nucleic acids on the basis of electrostatic interactions, and the ability of DNA-dendrimer complexes to transfer oligonucleotides and plasmid DNA to mediate antisense inhibition was assessed in an in vitro cell culture system. Cell lines that permanently express luciferase gene were developed using dendrimer mediated transfection. Transfections of antisense oligonucleotides or antisense cDNA plasmids into these cell lines using dendrimers resulted in a specific and dose dependent inhibition of luciferase expression. This inhibition caused approximately 25-50% reduction of baseline luciferase activity. Binding of the phosphodiester oligonucleotides to dendrimers also extended their intracellular survival. While dendrimers were not cytotoxic at the concentrations effective for DNA transfer, some non-specific suppression of luciferase expression was observed. Our results indicate that Starburst dendrimers can be effective carriers for the introduction of regulatory nucleic acids and facilitate the suppression of the specific gene expression.  相似文献   

12.
BACKGROUND: Nuclease degradation of plasmid DNA (pDNA) vectors after delivery and during trafficking to the nucleus is a barrier to gene expression. This barrier may be circumvented by shielding the pDNA from the nuclease-rich cell environment with adjuvants or by using nuclease inhibitors. A different alternative that is explored in this work is to make pDNA vectors more nuclease-resistant a priori. METHODS AND RESULTS: The hypothesis that a significant part of nuclease attack is directed towards certain labile sequences in a pDNA model (pVAX1/lacZ) was first tested. Homopurine-rich tracts in the bovine growth hormone polyadenylation signal (BGH poly A) were identified as labile sequences using S1 nuclease as a probe. Two pDNA variants were then created by replacing the BGH poly A region with the SV40 or a synthetic poly A signal. A study of plasmid degradation in eukaryotic cell lysates and mice plasma showed that the half-life of the supercoiled isoforms of the new vectors was always higher when compared with the control plasmid. An in vitro assay of the reporter beta-galactosidase in transfected CHO cells further showed that gene expression with the new pDNA variants was not affected negatively by the plasmid modifications. CONCLUSIONS: The replacement of labile sequences in plasmid DNA vectors improves resistance towards nuclease attack as shown by the increased half-lives of supercoiled plasmid isoforms incubated with endo/lysosomal, cytoplasmatic and blood plasma enzymes.  相似文献   

13.
Pasupathy K  Lin S  Hu Q  Luo H  Ke PC 《Biotechnology journal》2008,3(8):1078-1082
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass cells using poly(amidoamine) dendrimers. Our new scheme utilizes the physiochemical properties as well as the nanosize of the poly(amidoamine) dendrimer for direct and noninvasive gene delivery. The GFP gene was expressed in the plant cells as observed by confocal fluorescence microscopy. The transfection efficiency may be further improved by optimizing the pH of the cell culture medium and the molar ratio of the dendrimer to DNA. The use of the current delivery system can be extended to virtually all plant species having successful regeneration systems in place.  相似文献   

14.
To improve the transfection efficiency of nonviral vector, we synthesized the starburst polyamidoamine dendrimer conjugates with alpha-, beta-, and gamma-cyclodextrins (CDE conjugates), expecting the synergistic effect of dendrimer and cyclodextrins (CyDs). The (1)H NMR spectroscopic data indicated that alpha-, beta-, and gamma-CyDs are covalently bound to dendrimer in a molar ratio of 1:1. The agarose gel electrophoretic studies revealed that CDE conjugates formed the complexes with plasmid DNA (pDNA) and protected the degradation of pDNA by DNase I in the same manner as dendrimer. CDE conjugates showed a potent luciferase gene expression, especially in the dendrimer conjugate with alpha-CyD (alpha-CDE conjugate) which provided the greatest transfection activity (approximately 100 times higher than those of dendrimer alone and of the physical mixture of dendrimer and alpha-CyD) in NIH3T3 and RAW264.7 cells. In addition, the gene transfer activity of alpha-CDE conjugate was superior to that of Lipofectin. The enhancing gene transfer effect of alpha-CDE conjugate may be attributable to not only increasing the cellular association, but also changing the intracellular trafficking of pDNA. These findings suggest that alpha-CDE conjugate could be a new preferable nonviral vector of pDNA.  相似文献   

15.
Cationic dendrimers such as poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) have attractive characteristics for the delivery of nucleic acid and various biomedical applications. Most studies have focused on cationic dendrimer-based intracellular delivery, and very few studies have focused on the non-specific interaction of remnant cationic dendrimers with total RNA after isolation directly from cells in vitro. We examined RNA isolation using the common method of monophasic lysis from human macrophage-like cells (U937) and mouse fibroblast cells (NIH/3T3) that had been exposed to dendrimers and DNA/dendrimer complexes using gel electrophoresis. We found that PAMAM and PPI dendrimers strongly altered the mobility of RNA in the gels. In addition, the extent of dendrimer-induced alteration in RNA mobility was directly dendrimer-generation-dependent: the alteration was greater with higher-generation dendrimers. We also found that DNA/dendrimer complexes at higher dendrimer to DNA ratios interacted with RNA after isolation while gene expression was maintained. The interactions between RNA and remnant dendrimers after isolation were caused by electrostatic bindings, and we recovered total RNA using high ionic strength solvents (2M NaCl solution) to disrupt the electrostatic forces binding dendrimers to RNA. Because RNA isolation is routinely used for biological applications, such dendrimer-induced alteration in RNA mobility should be accounted for in the further processing of RNA-related applications.  相似文献   

16.
Endonuclease G (EndoG) is a well-conserved mitochondrial-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four-day time course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances, it may nonspecifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from nonviral DNA vectors in gene therapy efforts.  相似文献   

17.
Asymmetrical lysine dendrimers are promising as vectors for delivering gene expression constructs into mammalian cells. The condensing, protective, and transfection properties were studied for pentaspherical lysine dendrimer D5 and its analog D5C10, modified with capric acid residues at the outer sphere; in addition, the transfection activity was assayed for complexes DNA-dendrimer-endosomolytic peptide JTS-1. Fatty acid residues incorporated in lysine dendrimers proved to improve their ability to bind DNA, to protect DNA from nuclease degradation, and to ensure its transfer into the nucleus. Peptide JTS-1 introduced in DNA-dendrimer complexes significantly increased their transfection activity. The potentiating effect of JTS-1 was especially high with the DNA-D5C10 complex. An excess of JTS-1 changed the structure of the complexes and reduced their transfection activity. It was assumed that dendrimers D5 and D5C10 are promising vectors for delivering DNA to eukaryotic cells and provide a basis for constructing more refined nonvirus module carriers.  相似文献   

18.
In this study, we introduced histidine residues into l-arginine grafted PAMAM G4 dendrimers to enhance proton buffering capacity and evaluated the physicochemical characteristics and transfection efficacies in vitro. The results showed that the synthesized PAMAM G4 derivatives effectively delivered pDNA inside cells and the transfection level improved considerably as the number of histidine residues increased. Grafting histidine residues into the established polymer vector PAMAM G4-arginine improved their proton buffering capacity. The cytotoxicity of PAMAM G4 derivatives was tested and it was confirmed that they displayed relatively lower cytotoxicity compared to PEI25KD in various cell lines. Also, confocal microscopy results revealed that PAMAM G4 derivatives effectively delivered pDNA into cells, particularly into the nucleus. These PAMAM dendrimer derivatives conjugated with histidines and arginines may provide a promising polymeric gene carrier system.  相似文献   

19.
Fant K  Nordén B  Lincoln P 《Biochemistry》2011,50(7):1125-1127
Here we explore the use of ethidium to determine relative affinities of different gene delivery vectors for DNA and describe an improved method for studying the interaction. Specifically, we investigate the binding of poly(amidoamine) dendrimers and show that the DNA-dendrimer-ethidium system is far from thermodynamic equilibrium. Moreover, dendrimer surface modification through PEGylation appears to make the interaction with DNA more reversible, which is favorable from the perspective of vector unpacking. Probing the nonequilibrium state of DNA during condensation processes is thus important for developing novel vectors, and further, it could also be useful in the study of chromatin folding.  相似文献   

20.
We report on the preparation and characterization of poly(D, L-lactide-co-glycolide) (PLGA) microparticles with surface-conjugated polyamidoamine (PAMAM) dendrimers of varying generations. The buffering capacity and zeta-potential of the PLGA PAMAM microparticles increased with increasing generation level of the PAMAM dendrimer conjugated. Conjugation of the PAMAM dendrimer to the surface of the PLGA microparticle removed generation-dependent cytotoxicity in HEK293 and COS7 cell lines. PLGA PAMAM pDNA microparticles displayed similar cytotoxicity profiles to unmodified PLGA pDNA microparticles in COS7 cells. A generation three PAMAM dendrimer conjugated to PLGA microparticles significantly increased transfection efficiencies in comparison to unmodified PLGA microparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号