首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this study, we have documented an essential role for ADP-ribosylation factor 6 (ARF6) in cell surface remodeling in response to physiological stimulus and in the down regulation of stress fiber formation. We demonstrate that the G-protein-coupled receptor agonist bombesin triggers the redistribution of ARF6- and Rac1-containing endosomal vesicles to the cell surface. This membrane redistribution was accompanied by cortical actin rearrangements and was inhibited by dominant negative ARF6, implying that bombesin is a physiological trigger of ARF6 activation. Furthermore, these studies provide a new model for bombesin-induced Rac1 activation that involves ARF6-regulated endosomal recycling. The bombesin-elicited translocation of vesicular ARF6 was mimicked by activated Galphaq and was partially inhibited by expression of RGS2, which down regulates Gq function. This suggests that Gq functions as an upstream regulator of ARF6 activation. The ARF6-induced peripheral cytoskeletal rearrangements were accompanied by a depletion of stress fibers. Moreover, cells expressing activated ARF6 resisted the formation of stress fibers induced by lysophosphatidic acid. We show that the ARF6-dependent inhibition of stress fiber formation was due to an inhibition of RhoA activation and was overcome by expression of a constitutively active RhoA mutant. The latter observations demonstrate that activation of ARF6 down regulates Rho signaling. Our findings underscore the potential roles of ARF6, Rac1, and RhoA in the coordinated regulation of cytoskeletal remodeling.  相似文献   

4.
Tuberous sclerosis complex (TSC) 1 and TSC2 are thought to be involved in protein translational regulation and cell growth, and loss of their function is a cause of TSC and lymphangioleiomyomatosis (LAM). However, TSC1 also activates Rho and regulates cell adhesion. We found that TSC2 modulates actin dynamics and cell adhesion and the TSC1-binding domain (TSC2-HBD) is essential for this function of TSC2. Expression of TSC2 or TSC2-HBD in TSC2-/- cells promoted Rac1 activation, inhibition of Rho, stress fiber disassembly, and focal adhesion remodeling. The down-regulation of TSC1 with TSC1 siRNA in TSC2-/- cells activated Rac1 and induced loss of stress fibers. Our data indicate that TSC1 inhibits Rac1 and TSC2 blocks this activity of TSC1. Because TSC1 and TSC2 regulate Rho and Rac1, whose activities are interconnected in a reciprocal fashion, loss of either TSC1 or TSC2 function may result in the deregulation of cell motility and adhesion, which are associated with the pathobiology of TSC and LAM.  相似文献   

5.
Cell responses regulated by early reorganization of actin cytoskeleton   总被引:1,自引:0,他引:1  
Microfilaments exist in a dynamic equilibrium between monomeric and polymerized actin and the ratio of monomers to polymeric forms is influenced by a variety of extracellular stimuli. The polymerization, depolymerization and redistribution of actin filaments are modulated by several actin-binding proteins, which are regulated by upstream signalling molecules. Actin cytoskeleton is involved in diverse cellular functions including migration, ion channels activity, secretion, apoptosis and cell survival. In this review we have outlined the role of actin dynamics in representative cell functions induced by the early response to extracellular stimuli.  相似文献   

6.
Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.  相似文献   

7.
The B cell adaptor molecule of 32 kDa (Bam32) is an adaptor that links the B cell antigen receptor (BCR) to ERK and JNK activation and ultimately to mitogenesis. After BCR cross-linking, Bam32 is recruited to the plasma membrane and accumulates within F-actin-rich membrane ruffles. Bam32 contains one Src homology 2 and one pleckstrin homology domain and is phosphorylated at a single site, tyrosine 139. To define the function of Bam32 in membrane-proximal signaling events, we established human B cell lines overexpressing wild-type or mutant Bam32 proteins. The basal level of F-actin increased in cells expressing wild-type or myristoylated Bam32 but decreased in cells expressing either an Src homology-2 or Tyr-139 Bam32 mutant. Overexpression of wild-type Bam32 also affected BCR-induced actin remodeling, which was visualized as increases in F-actin-rich membrane ruffles. In contrast, Bam32 mutants largely blocked the BCR-induced increase in cellular F-actin. The positive and negative effects of Bam32 variants on F-actin levels were closely mirrored by their effects on the activation of the GTPase Rac1, which is known to regulate actin remodeling in lymphocytes. Bam32-deficient DT40 B cells showed decreased Rac1 activation and a failure of Rac1 to co-localize with the BCR, whereas cells overexpressing Bam32 had increased constitutive Rac1 activation. These results suggest that Bam32 regulates the cytoskeleton through Rac1. Bam32 variants also affected downstream signaling to JNK in a manner similar to that of Rac1, suggesting that the effect of Bam32 on JNK activation may be at least partially mediated through Rac1. Our results demonstrate a novel phosphorylation-dependent function of Bam32 in regulating Rac1 activation and actin remodeling.  相似文献   

8.
9.
The formation of an immunological synapse (IS) requires tight regulation of actin dynamics by many actin polymerizing/depolymerizing proteins. However, the significance of actin stabilization at the IS remains largely unknown. In this paper, we identify a novel function of TAGLN2—an actin-binding protein predominantly expressed in T cells—in stabilizing cortical F-actin, thereby maintaining F-actin contents at the IS and acquiring LFA-1 (leukocyte function-associated antigen-1) activation after T cell receptor stimulation. TAGLN2 blocks actin depolymerization and competes with cofilin both in vitro and in vivo. Knockout of TAGLN2 (TAGLN2−/−) reduced F-actin content and destabilized F-actin ring formation, resulting in decreased cell adhesion and spreading. TAGLN2−/− T cells displayed weakened cytokine production and cytotoxic effector function. These findings reveal a novel function of TAGLN2 in enhancing T cell responses by controlling actin stability at the IS.  相似文献   

10.
Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation.  相似文献   

11.
BACKGROUND: The brief incubation of opossum kidney (OK) cells with low P(i) results in Na+/P(i) cotransport up-regulation and in substantial, but transient, cytoskeletal reorganization. In this study, we examined signaling events involved in the depolymerization of microfilaments. RESULTS: Confocal laser scanning microscopy, immunoblot and immunoprecipitation experiments revealed villin co-localization with mainly actin short filaments and monomers, indicating that under the conditions used, villin acted as an actin-severing protein. Further analysis revealed that low concentrations of extracellular phosphate resulted in phospholipase Cgammal (PLC-gammal) translocation to the actin cytoskeleton, without increases in its tyrosine phosphorylation. Additionally, tyrosine phosphorylation of a portion of insoluble villin was increased; whereas, only tyrosine phosphorylated villin associated with PLC-gammal. Although, tyrosine phosphorylation of PLC-gammal was not observed during Na+/P(i) cotransport up-regulation, genistein treatment abolished the enzyme's translocation to the actin cytoskeleton, as well as its association with villin. In addition, villin was found to associate with the 85-KDa subunit (p85) of phosphatidylinositol (PI)-3 kinase, concomitant with PLC-gammal, in the cytoskeletal fraction of Na+/P(i) cotransport up-regulated cells. CONCLUSIONS: Our observations suggest a signaling mechanism linking low ambient P(i) levels to the acute up-regulation of its cotransport with sodium and the depolymerization of the subcortical actin cytoskeleton.  相似文献   

12.
Cadherin receptors are key morphoregulatory molecules during development. To dissect their mode of action, we developed an approach based on the use of myogenic C2 cells and beads coated with an Ncad-Fc ligand, allowing us to mimic cadherin-mediated adhesion. We used optical tweezers and video microscopy to investigate the dynamics of N-cadherin anchoring within the very first seconds of bead-cell contact. The analysis of the bead movement by single-particle tracking indicated that N-cadherin molecules were freely diffusive in the first few seconds after bead binding. The beads rapidly became diffusion-restricted and underwent an oriented rearward movement as a result of N-cadherin anchoring to the actin cytoskeleton. The kinetics of anchoring were dependent on ligand density, suggesting that it was an inducible process triggered by active cadherin recruitment. This anchoring was inhibited by the dominant negative form of Rac1, but not that of Cdc42. The Rac1 mutant had no effect on cell contact formation or cadherin-catenin complex recruitment, but did inhibit actin recruitment. Our results suggest that cadherin anchoring to the actin cytoskeleton is an adhesion-triggered, Rac1-regulated process enabling the transduction of mechanical forces across the cell membrane; they uncover novel aspects of the action of cadherins in cell sorting, cell migration, and growth cone navigation.  相似文献   

13.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

14.
Shigella, the causative agent of bacillary dysentery, invades epithelial cells. Upon bacterial-cell contact, the type III bacterial effector IpaA binds to the cytoskeletal protein vinculin to promote actin reorganization required for efficient bacterial uptake. We show that the last 74 C-terminal residues of IpaA (A559) bind to human vinculin (HV) and promotes its association with actin filaments. Polymerisation experiments demonstrated that A559 was sufficient to induce HV-dependent partial capping of the barbed ends of actin filaments. These results suggest that IpaA regulates actin polymerisation/depolymerisation at sites of Shigella invasion by modulating the barbed end capping activity of vinculin.  相似文献   

15.
Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.  相似文献   

16.
17.
IFNγ is a potent activator and IL-10 a powerful inhibitor of macrophage functions. However, neither all cellular functions are enhanced by IFNγ nor IL-10 inhibits all cellular responses. Thus, FcγRs-mediated phagocytosis in monocyte-derived macrophages (MDM) increases after IL-10 treatment, and decreases after treatment with IFNγ, although both IL-10 and IFNγ up regulate FcγRI expression. In this work we investigated the effect of IFNγ and IL-10 on phagocytic signaling by FcγRs in MDM. Treatment with IFNγ diminished phagocytosis of IgG-opsonized SRBC (IgG-SRBC) while treatment with IL-10 increased it. These opposite effects cannot be attributed to changes in FcγR expression induced by each cytokine. Early biochemical responses mediated by FcγRs were distinctly affected by cytokine treatment. Syk phosphorylation and the rise in [Ca2+]i were higher after IL-10 treatment, whereas IFNγ treatment also increased Syk phosphorylation but had no effect on the rise in [Ca2+]i. IFNγ treatment led to increased basal levels of F-actin and this effect correlated with the decrease in phagocytosis of both IgG-SRBC and non-opsonized Escherichia coli. IL-10 did not alter F-actin basal levels, and enhanced the phagocytosis of E. coli and IgG-SRBC. The level of F-actin reached after IFNγ treatment was not further increased after stimulation with IgG-SRBC or CCL5, whereas MDM treated with IL-10 showed a slightly higher response than control cells to CCL5. IFNγ increased Rac1-GTP levels. Inhibition of PI3K with LY294002 prevented IFNγ-mediated actin polymerization. Our data suggest that IFNγ induces a higher basal level of F-actin and activation of Rac1, affecting the response to stimuli that induce cytoskeleton rearrangement such as phagocytic or chemotactic stimuli.  相似文献   

18.
The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors, which modify the actin cytoskeleton and increase the secretion of prostate-specific antigen (PSA) within minutes. Membrane steroid receptors are, indeed, a newly identified element of steroid action that is different from the classical intracellular sites. In the present work, using a nonpermeable analog of testosterone (testosterone-BSA), we investigated the signaling pathway that is triggered by the membrane testosterone receptors' activation and leads to actin cytoskeleton reorganization. We report that exposure of cells to testosterone-BSA resulted in phosphorylation of focal adhesion kinase (FAK), the association of FAK with the phosphatidylinositol-3 (PI-3) kinase, and the subsequent activation of the latter as well as the activation of the small guanosine triphosphatases Cdc42/Rac1. Pretreatment of cells with the specific PI-3 kinase inhibitor wortmannin abolished both the activation of the small guanosine triphosphatases and the alterations of actin cytoskeleton, whereas it did not affect the phosphorylation of FAK. These findings indicate that PI-3 kinase is activated downstream of FAK and upstream of Cdc42/Rac1, which subsequently regulate the actin organization. Moreover, wortmannin diminished the secretion of PSA, implying that the signaling events described above are responsible for the testosterone-BSA-induced PSA secretion. Our results are discussed under the prism of a possible implication of these membrane receptors in prostate cancer chemotherapy.  相似文献   

19.
Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.  相似文献   

20.
A comprehensive analysis of the role of the actin cytoskeleton in exocytosis of the four different neutrophil granule subsets had not been performed previously. Immunoblot analysis showed that, compared with plasma membrane, there was less actin associated with secretory vesicles (SV, 75%), gelatinase granules (GG, 40%), specific granules (SG, 10%), and azurophil granules (AG, 5%). Exocytosis of SV, SG, and AG was measured as increased plasma membrane expression of CD35, CD66b, and CD63, respectively, with flow cytometry, and GG exocytosis was measured as gelatinase release with an ELISA. N-formylmethionyl-leucyl-phenylalanine (FMLP) stimulated exocytosis of SV, GG, and SG with an ED50 of 15, 31, and 28 nM, respectively, with maximal response at 10–7 M FMLP by 5 min, while no exocytosis of AG was detected. Disruption of the actin cytoskeleton by latrunculin A and cytochalasin D induced a decrease in FMLP-stimulated CD35 expression after an initial increase. Both drugs enhanced the rate and extent of FMLP-stimulated GG, SG, and AG exocytosis, while the EC50 for FMLP was not altered. We conclude that the actin cytoskeleton controls access of neutrophil granules to the plasma membrane, thereby limiting the rate and extent of exocytosis of all granule subsets. Differential association of actin with the four granule subsets was not associated with graded exocytosis. human; cell activation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号