首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .  相似文献   

2.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

3.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   

4.
Michel H 《Biochemistry》1999,38(46):15129-15140
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is exclusively coupled to the last two electron transfer steps. A careful analysis of the existing data shows that there is no experimental evidence for this paradigm. It is more likely that only three protons are pumped during the second half of the catalytic cycle of cytochrome c oxidase after the reaction with oxygen. In this article a variant of a recent mechanistic model of proton pumping by electrostatic repulsion is discussed. It is based on the electroneutrality principle in a way that in the catalytic cycle each electron transfer to the membrane-embedded electron acceptors is charge-compensated by uptake of one proton. The mechanism takes into account the findings with mutant cytochrome c oxidases and explains the results of many recent experiments, including the effects of hydrogen peroxide.  相似文献   

5.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

6.
An inhibition enzyme electrode to measure toxic gases can be constructed using the respiratory enzyme cytochrome oxidase. The rate of enzyme turnover is followed by reducing cytochrome c on a gold electrode modified with the mediator bis(4-pyridyl) disulphate. The kinetics and mechanism of the system have been measured. The electrochemical kinetics for the oxidation of cytochrome c have been studied by rotating disc voltammetry and are shown to obey the Koutecky-Levich equation. The standard electrochemical rate constant is found to be 3 x 10(-3) cms-1. At ambient oxygen concentration the orders of the current with respect to the concentration of cytochrome oxidase, cytochrome c and oxygen are found to be 1/2, 1/2 and zero respectively. These orders are consistent with the rate limiting step being the turnover of the enzyme under saturated conditions in a thin reaction layer close to the electrode. At lower oxygen concentrations a good fit between the experimental results and a theoretical model further confirms the assignation of the mechanism. The rate constants describing the oxidation and reduction of the enzyme have been measured. The pH dependence of the current has been studied.  相似文献   

7.
Cytochrome c oxidase is a large intrinsic membrane protein designed to use the energy of electron transfer and oxygen reduction to pump protons across a membrane. The molecular mechanism of the energy conversion process is not understood. Other proteins with simpler, better resolved structures have been more completely defined and offer insight into possible mechanisms of proton transfer in cytochrome c oxidase. Important concepts that are illustrated by these model systems include the ideas of conformational change both close to and at a distance from the triggering event, and the formation of a transitory water-linked proton pathway during a catalytic cycle. Evidence for the applicability of these concepts to cytochrome c oxidase is discussed.  相似文献   

8.
The effect of detergents on electron and proton transfer in bovine cytochrome c oxidase was studied using steady-state and transient-state methods. Cytochrome c oxidase in lauryl maltoside has high maximal turnover (TN(max)=400 s(-1)), whereas activity is low (TN(max)=10 s(-1)) in Triton X-100. Single turnover studies of intramolecular electron transfer show similar rates in either detergent. Transient proton uptake experiments show the oxidase in lauryl maltoside consumes 1.8+/-0.3 H(+)/aa(3) during either partial reduction of the oxidase or reaction of fully reduced enzyme with O(2). However, the oxidase in Triton X-100 consumes 2.6+/-0.4 H(+)/aa(3) during partial reduction and 1.0+/-0.2 H(+)/aa(3) in the O(2) reaction. Absorption spectra recorded during turnover show that the enzyme undergoes activation in lauryl maltoside, but does not activate in Triton X-100. We propose that cytochrome c oxidase in different detergents allows access to different sites of protonation, which in turn influences steady-state activity.  相似文献   

9.
Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome c oxidase from Paracoccus denitrificans were observed. The three histidine Cu(B) ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the "histidine cycle" mechanisms formulated previously.  相似文献   

10.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational "strain" in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

12.
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.  相似文献   

13.
Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

14.
Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6-9.5).  相似文献   

15.
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.  相似文献   

16.
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

17.
One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-potential acceptor, O(2). Proton pumping is associated with distinct exergonic reaction steps that involve gradual reduction of oxygen to water. During the process of O(2) reduction, unprotonated high pK(a) proton acceptors are created at the catalytic site. Initially, these proton acceptors become protonated as a result of intramolecular proton transfer from a residue(s) located in the membrane-spanning part of the enzyme, but removed from the catalytic site. This residue is then reprotonated from the bulk solution. In cytochrome c oxidase from Rhodobacter sphaeroides, the proton is initially transferred from a glutamate, E(I-286), which has an apparent pK(a) of 9.4. According to a recently published structure of the enzyme, the deprotonation of E(I-286) is likely to result in minor structural changes that propagate to protonatable groups on the proton output (positive) side of the protein. We propose that in this way, the free energy available from the O(2) reduction is conserved during the proton transfer. On the basis of the observation of these structural changes, a possible proton-pumping model is presented in this paper. Initially, the structural changes associated with deprotonation of E(I-286) result in the transfer of a proton to an acceptor for pumped protons from the input (negative) side of the membrane. After reprotonation of E(I-286) this acceptor releases a proton to the output side of the membrane.  相似文献   

18.
Control of proteoliposomal cytochrome c oxidase: the partial reactions   总被引:2,自引:0,他引:2  
The steady-state spectroscopic behaviour and the turnover of cytochrome c oxidase incorporated into proteoliposomes have been investigated as functions of membrane potential and pH gradient. The respiration rate is almost linearly dependent on [cytochrome c2+] at high flux, but while the cytochrome a redox state is always dependent on the [cytochrome c2+] steady state, it reaches a maximum reduction level less than 100% in each case. The maximal aerobic steady-state reduction level of cytochrome a is highest in the presence of valinomycin and lowest in the presence of nigericin. The proportion of [cytochrome c2+] required to achieve 50% of maximal reduction of cytochrome a varies with the added ionophores; the apparent redox potential of cytochrome a is most positive in the fully decontrolled system (plus valinomycin and nigericin). At low levels of cytochrome a reduction, the rate of respiration is no longer a linear function of [cytochrome c2+], but is dependent upon the redox state of both cytochromes a and c. That is, proteoliposomal oxidase does not follow Smith-Conrad kinetics at low cytochrome c reduction levels, especially in the controlled states. The control of cytochrome oxidase turnover by delta pH and by delta psi can be explained either by an allosteric model or by a model with reversed electron transfer between the binuclear centre and cytochrome a. Other evidence suggests that the reversed electron transfer model may be the correct one.  相似文献   

19.
Cytochrome c oxidase is an electron-transfer driven proton pump. In this paper, we propose a complete chemical mechanism for the enzyme's proton-pumping site. The mechanism achieves pumping with chemical reaction steps localized at a redox center within the enzyme; no indirect coupling through protein conformational changes is required. The proposed mechanism is based on a novel redox-linked transition metal ligand substitution reaction. The use of this reaction leads in a straightforward manner to explicit mechanisms for achieving all of the processes previously determined (Blair, D.F., Gelles, J. and Chan, S.I. (1986) Biophys. J. 50, 713-733) to be needed to accomplish redox-linked proton pumping. These processes include: (1) modulation of the energetics of protonation/deprotonation reactions and modulation of the energetics of redox reactions by the structural state of the pumping site; (2) control of the rates of the pump's redox reactions with its electron-transfer partners during the turnover cycle (gating of electrons); and (3) regulation of the rates of the protonation/deprotonation reactions between the pumping site and the aqueous phases on the two sides of the membrane during the reaction cycle (gating of protons). The model is the first proposed for the cytochrome oxidase proton pump which is mechanistically complete and sufficiently specific that a realistic assessment can be made of how well the model pump would function as a redox-linked free-energy transducer. This assessment is accomplished via analyses of the thermodynamic properties and steady-state kinetics expected of the model. These analyses demonstrate that the model would function as an efficient pump and that its behavior would be very similar to that observed of cytochrome oxidase both in the mitochondrion and in purified preparations. The analysis presented here leads to the following important general conclusions regarding the mechanistic features of the oxidase proton pump. (1) A workable proton-pump mechanism does not require large protein conformational changes. (2) A redox-linked proton pump need not display a pH-dependent midpoint potential, as has frequently been assumed. (3) Mechanisms for redox-linked proton pumps that involve transition metal ligand exchange reactions are quite attractive because such reactions readily lend themselves to the linked gating processes necessary for proton pumping.  相似文献   

20.
M Denis 《Biochimie》1986,68(3):459-470
Recent works on the structure and the function of cytochrome-c oxidase are reviewed. The subunit composition of the mitochondrial enzyme depends on the species and is comprised of between 5 and 13 subunits. It is reduced to 1 to 3 subunits in prokaryotes. The complete amino acid composition has been derived from protein sequencing. Gene sequences are partially known in several eukaryote species. Metal centers are only located in subunits I and II. The mitochondrial cytochrome-c oxidase is Y-shaped; the arms of the Y cross the inner membrane, the stalk protrudes into the intermembrane space. The bacterial enzyme has a simpler, elongated shape. A number of data have been accumulated on the subunit topology and on their location within the protein. All available spectrometric techniques have been used to investigate the environment of the metal centers as well as their interactions. From the literature, attention must be paid to what may be considered or not as an active form. The steady improvement of the instrumentation has yielded evidence for different kinds of heterogeneities which could reflect the in vivo situation. The 'pulsed' and 'resting' conformers have been well characterized. The 'oxygenated' form has been identified as a peroxide derivative of the fully oxidized cytochrome-c oxidase. The mammalian enzyme has been isolated in fully active monomeric form which does not preclude the initially suggested dimeric behavior in situ. The role of the lipids is still largely investigated, mainly through reconstitution experiments. Kinetic studies of electron transfer between cytochrome c and cytochrome-c oxidase lead to a single catalytic site model to account for the multiphasic kinetics. Results related to the low temperature investigation of the intermediate steps in the reaction between oxygen and cytochrome-c oxidase received a sound confirmation by the resolution of compound A at room temperature. It is also pointed out that the so-called mixed valence state might not be a transient state in the catalytic reduction of oxygen. The functioning of cytochrome-c oxidase as a proton pump has been supported by a number of experimental results. Subunit III would be involved in this process. The redox link to the proton pump has been suggested to be at the Fea-CuA site. The molecular mechanism responsible for the proton pumping is still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号