共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiao Z Yang M Fang L Lv Q He Q Deng M Liu X Chen X Chen M Xie X Hu J 《Cell biology international》2012,36(7):625-633
Extracellular nucleotides mediate a wide range of physiological effects by interacting with plasma membrane P2 purinergic receptors. P2 receptors are expressed in certain kinds of stem cells, and function to induce cytokine expression and to modulate cell proliferation. We have analysed the expression and the function of P2 receptors in human umbilical cord blood-derived EPCs (endothelial progenitor cells). EPCs expressed P2X4,6,7 and P2Y2,4,11,13,14 receptors and extracellular ATP inhibited EPCs proliferation. As in a previous study, EPCs expressed functional TLR4 (Toll-like receptor 4) and activation of TLR4 by LPS (lipopolysaccharide) evoked a pro-inflammatory immune response. When human EPCs were stimulated with LPS and nucleotides, ATP or UTP inhibited the expression of pro-inflammatory cytokines including MCP-1 (monocyte chemoattractant protein-1), IFNα (interferon α), TNFα (tumour necrosis factor α) and adhesion molecule VCAM-1 (vascular cell adhesion molecule 1) induced by LPS. ATP and UTP also down-regulated the gene expression of TLR4, CD14 and MyD88 (myeloid differentiation factor 88), a TLR adaptor molecule, and protein expression of CD14 and MyD88. Moreover, the phosphorylation of NF-κB (nuclear factor κB) p65 induced by TLR4 activation was inhibited partly by ATP or UTP at concentrations of 1-5 μM. These results suggest that extracellular nucleotides negatively regulate EPCs proliferation and TLR4 signalling. 相似文献
2.
Hanqing Feng Dongdong Guan Jingyue Bai Kun Sun Lingyun Jia 《Molecular Plant Pathology》2015,16(6):633-639
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area. 相似文献
3.
4.
5.
Lipopolysaccharide regulates toll-like receptor 4 expression in human aortic smooth muscle cells 总被引:5,自引:0,他引:5
Lipopolysaccharide (LPS) is a potent activator of cells of the immune and inflammatory systems, including macrophages, monocytes, and endothelial cells (EC). Toll-like receptor 4 (TLR4) has been identified as the primary receptor for LPS. Vascular smooth muscle cells (VSMCs) likely contribute significantly to the inflammation induced by low-level LPS in patients who are at risk for atherosclerosis. Previous study indicated that functional TLR4 was present in VSMCs. However, it remains unclear whether low levels of commercial LPS preparations can affect TLR4 expression in early stage. Here Real-time quantitative PCR analysis was used to detect TLR4 mRNA expression; Immunofluorescence, Western blot analysis and flow cytometry were used to examine TLR4 protein expression. It was shown that TLR4 was present in Human Aortic Smooth Muscle Cells (HASMCs). LPS can up-regulate TLR4 mRNA and protein expression in HASMCs in dose- and time-dependent manner. These data indicate that LPS regulate TLR4 expression in HASMCs. 相似文献
6.
Cécile Delarasse Pauline Gonnord Micaela Galante Rodolphe Auger Hervé Daniel Iris Motta Jean M. Kanellopoulos 《Journal of neurochemistry》2009,109(3):846-857
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage. 相似文献
7.
Sebok K. Halder Hayato Matsunaga Ken J. Ishii Shizuo Akira Kensuke Miyake Hiroshi Ueda 《Journal of neurochemistry》2013,126(2):243-260
Reprogramming of toll‐like receptor 4 (TLR4) by brief ischemia or lipopolysacharide (LPS) contributes to superintending tolerance against destructive ischemia in brain. However, beneficial roles of TLR4 signaling in ischemic retina are not well known. This study demonstrated that preconditioning with LPS 48 h prior to the retinal ischemia prevents the cellular damage in morphology with hematoxylin and eosin (H&E) staining and functions of retina with electroretinogram (ERG), while post‐ischemia treatment deteriorated it. The preventive effects of LPS preconditioning showed the cell type‐specificity of retinal cells. There was complete rescue of ganglion cells, partial rescue of bipolar and photoreceptor cells or no rescue of amacrine cells, respectively. LPS treatment caused the proliferation and migration of retinal microglia and its preconditioning prevented the ischemia‐induced microglial activation. Preventive actions from cell damages following LPS preconditioning prior to retinal ischemia were abolished in TLR4 knock‐out mice, and by pre‐treatments with anti‐TLR4 antibody or minocycline, a microglia inhibitor, which themselves had no effects on the retinal ischemia‐induced damages or microglia activation. Thus, this study revealed that TLR4 mediates the LPS preconditioning‐induced preventive effects through microglial activation in the retinal ischemia model. 相似文献
8.
Henriques ES Brito RM Soares H Ventura S de Oliveira VL Parkhouse RM 《Protein science : a publication of the Protein Society》2011,20(2):247-255
African swine fever virus (ASFV) is a large double-stranded DNA virus responsible for a lethal pig disease, to which no vaccine has ever been obtained. Its genome encodes a number of proteins involved in virus survival and transmission in its hosts, in particular proteins that inhibit signaling pathways in infected macrophages and, thus, interfere with the host's innate immune response. A recently identified novel ASFV viral protein (pI329L) was found to inhibit the Toll-like receptor 3 (TLR3) signaling pathway, TLR3 being a crucial "danger detector." pI329L has been predicted to be a transmembrane protein containing extracellular putative leucine-rich repeats similar to TLR3, suggesting that pI329L might act as a TLR3 decoy. To explore this idea, we used comparative modeling and other structure prediction protocols to propose (a) a model for the TLR3-Toll-interleukin-1 receptor homodimer and (b) a structural fold for pI329L, detailed at atomistic level for its cytoplasmic domain. As this later domain shares only remote sequence relationships with the available TLR3 templates, a more complex modeling strategy was employed that combines the iterative implementation of (multi)threading/assembly/refinement (I-TASSER) structural prediction with expertise-guided posterior refinement. The final pI329L model presents a plausible fold, good structural quality, is consistent with the available experimental data, and it corroborates our hypothesis of pI329L being a TLR3 antagonist. 相似文献
9.
Toll-like receptors (TLRs) are a group of sensors on the surface of antigen-presenting cells, such as dendritic cells and macrophages, which recognize microbial pathogens and induce innate and adaptive immune responses. Periodontitis is an inflammatory disease characterized by the destruction of tooth-supporting structures. In order to address whether TLR4 signaling plays a role in periodontitis, we studied the gene expression change in human periodontal ligament cells (HPDLCs) in response to TLR4 ligand, lipopolysaccharide treatment by microarray analysis. Expression of TLR4 was detected in HPDLCs. Lipopolysaccharide treatment increased the expression of 12 genes (more than twofold), including TLR4, TLR5, TLR7, Pellino 1, colony stimulating factor 2 (CSF2) and IL-6. In addition, the expression of 15 genes (less than equal to twofold) was decreased, including Fos, LY64 and LY86. In addition, real-time PCR was used to confirm the change of gene expression of TLR4, IL-6 and Fos. We also showed that the upregulation of IL-6 by lipopolysaccharide treatment was TLR4-dependent. This pattern of gene expression indicates that pathogens may trigger TLR4 signaling and cause periodontitis. Manipulating TLR4 signaling may potentially become one of the recognized therapies for periodontitis. 相似文献
10.
Mycoplasmal lipoproteins induce toll-like receptor 2- and caspases-mediated cell death in lymphocytes and monocytes 总被引:6,自引:0,他引:6
Into T Nodasaka Y Hasebe A Okuzawa T Nakamura J Ohata N Shibata K 《Microbiology and immunology》2002,46(4):265-276
Lipoproteins of Mycoplasma salivarium and Mycoplasma fermentans preferentially induced necrotic cell death in lymphocytic cell lines, MOLT-4 and Raji, and in one monocytic cell line, THP-1, whereas they preferentially induced apoptotic cell death in another monocytic cell line, HL-60. These findings were also supported by ultrastructural observations by the use of scanning and transmission electron microscopes and by agarose gel electrophoresis of the genomic DNA. The lipoproteins activated caspase-3 in both MOLT-4 and HL-60 cells, which was assessed by the cleavage of the synthetic substrate DEVD-pNA and the endogenous substrate poly(ADP-ribose) polymerase. The cytotoxicity to MOLT-4 and HL-60 cells was inhibited by various caspase inhibitors, Ac-DMQD-CHO, Ac-IETD-CHO, and Z-VAD-FMK. The cytotoxicity was also partially suppressed by the monoclonal antibody to Toll-like receptor 2. Thus this study demonstrated that mycoplasmal lipoproteins induce caspases-dependent necrotic and apoptotic cell death in lymphocytes and monocytes/macrophages, which is partially induced by TLR2-mediated signaling. 相似文献
11.
12.
ATP是最重要的胞内代谢产物之一,也是一种重要的信号分子。研究发现,某些凋亡刺激能诱导肿瘤细胞内ATP释放到细胞外,这种释放到细胞外的ATP能促进吞噬细胞对凋亡细胞的吞噬,由此激发特异性抗肿瘤免疫杀伤效应,提示细胞外ATP在肿瘤免疫治疗中的潜在应用价值。本文就细胞外ATP在肿瘤免疫中的研究进展作一综述。 相似文献
13.
14.
15.
Hui‐Mei Wu Li‐Feng Zhang Pei‐Shang Ding Ya‐Jing Liu Xu Wu Jiang‐Ning Zhou 《Journal of cellular and molecular medicine》2014,18(7):1300-1312
The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co‐culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll‐like receptor 9 (TLR9) ligand CpG‐ODN, which supports the pro‐vital mediation by microglia on this NSCs‐improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA‐1, the latter of which was positively correlated with TLR9 or extracellular‐regulated protein kinases 1/2 (ERK1/2) activation. Real‐time PCR revealed that NSCs inhibited the expression of pro‐inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells‐2 (TREM2) and insulin growth factor 1 (IGF‐1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG‐ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9‐ERK1/2 pathway was involved in the NSCs‐induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9‐ERK1/2 pathway seems to participate in this NSCs‐mediated rescue action. 相似文献
16.
Inflammatory factor receptor Toll‐like receptor 4 controls telomeres through heterochromatin protein 1 isoforms in liver cancer stem cell 下载免费PDF全文
Qidi Zheng Jie Xu Zhuojia Lin Yanan Lu Xiaoru Xin Xiaonan Li Yuxin Yang Qiuyu Meng Chen Wang Wujun Xiong Dongdong Lu 《Journal of cellular and molecular medicine》2018,22(6):3246-3258
17.
Yun HJ Yoon JH Lee JK Noh KT Yoon KW Oh SP Oh HJ Chae JS Hwang SG Kim EH Maul GG Lim DS Choi EJ 《The EMBO journal》2011,30(12):2465-2476
Microglia, the resident macrophages of the mammalian central nervous system, migrate to sites of tissue damage or infection and become activated. Although the persistent secretion of inflammatory mediators by the activated cells contributes to the pathogenesis of various neurological disorders, most activated microglia eventually undergo apoptosis through the process of activation-induced cell death (AICD). The molecular mechanism of AICD, however, has remained unclear. Here, we show that Daxx and mammalian Ste20-like kinase-1 (MST1) mediate apoptosis elicited by interferon-γ (IFN-γ) in microglia. IFN-γ upregulated the expression of Daxx, which in turn mediated the homodimerization, activation, and nuclear translocation of MST1 and apoptosis in microglial cells. Depletion of Daxx or MST1 by RNA interference also attenuated IFN-γ-induced cell death in primary rat microglia. Furthermore, the extent of IFN-γ-induced death of microglia in the brain of MST1-null mice was significantly reduced compared with that apparent in wild-type mice. Our results thus highlight new functions of Daxx and MST1 that they are the key mediators of microglial cell death initiated by the proinflammatory cytokine IFN-γ. 相似文献
18.
动脉粥样硬化(atherosclerosis,AS)是多种细胞、炎性介质参与形成的慢性炎症性疾病。Toll样受体家族(Toll like receptors,TLRs)中的TLR4是机体重要的诱导分泌多种炎性因子的模式识别受体。现有证据表明,TLR4不仅产生多种炎性因子诱发血管炎症反应,而且促进AS斑块形成和发展,造成斑块不稳定,甚至破裂,对AS的发生、发展具有重要作用。因此,了解TLR4对AS的影响有助于发现新的治疗靶点和对策。主要对TLR4在AS发病机制和易损斑块发展中的作用进行综述。 相似文献
19.
20.
Toll样受体4(Toll like receptor 4,TLR4)是广泛表达于哺乳动物的跨膜受体,由于TLR4在人体的高表达与各种炎症反应相关联,抑制过高的TLR4表达可能是控制机体炎症损伤的新途径.目前的研究主要是针对TLR4的直接阻断与对TLR4的信号转导通路的抑制.由于TLR4的信号转导通路已经较为明确,从而研究对TLR4信号转导通路的抑制可能会对机体过强的炎症反应及损伤的控制产生有益作用.本文就当前针对抑制TLR4信号转导通路的研究作一综述. 相似文献