首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of oxidized bovine heart cytochrome c oxidase (CcO) with one equivalent of hydrogen peroxide results in the formation of two spectrally distinct species. The yield of these two forms is controlled by the ionization of a group with a pK(a) of 6.6. At basic pH, where this group is deprotonated, an intermediate called P dominates (P, because it was initially believed to be a peroxy compound). At acidic pH where the group is protonated, a different species, called F (ferryl intermediate) is obtained. We previously proposed that the only difference between these two species is the presence of one proton in the catalytic center of F that is absent in P. It is now suggested that the catalytic center of this F form has the same redox and protonation state as a second ferryl intermediate produced at basic pH by two equivalents of hydrogen peroxide; the role of the second equivalent of H(2)O(2) is that of a proton donor in the conversion of P to F. Two chloride-binding sites have been detected in oxidized CcO. One site is located at the binuclear center; the second site was identified from the sensitivity of g=3 signal of cytochrome a to chloride in the EPR spectra of oxidized CcO. Turnover of CcO releases chloride from the catalytic center into the medium probably by one of the hydrophobic channels, proposed for oxygen access, with an orientation parallel to the membrane plane. Chloride in the binuclear center is most likely not involved in CcO catalysis. The influence of the second chloride site upon several reactions of CcO has been assessed. No correlation was found between chloride binding to the second site and the reactions that were examined.  相似文献   

2.
The physiological regulation of mitochondrial respiration by NO has been reported to result from the reversible binding of NO to the two-electron reduced binuclear center (Fe(2+)(a3)-Cu(1+)(B)) of cytochrome c oxidase (CcO). Although the role of CcO and its derived catalytic intermediates in the catabolism of NO has been documented, little has been established for the enzyme in its fully oxidized state (Fe(3+)(a3)-Cu(2+)(B)). We report: (1) CcO, in its fully oxidized state, represents the major component of the mitochondrial electron transport chain for NO consumption as controlled by the binding of NO to its binuclear center. Phospholipid enhances NO consumption by fully oxidized CcO, whereas the consumption of NO is slowed down by membrane structure and membrane potential when CcO is embedded in the phospholipid bilayer. (2) In the presence of H(2)O(2), CcO was shown to serve as a mitochondria-derived NO peroxidase. A CcO-derived protein radical intermediate was induced and involved in the modulation of NO catabolism.  相似文献   

3.
A single tryptophan (W(334(I))) within the mitochondrial-encoded core subunits of cytochrome c oxidase (CcO) is selectively oxidized when hydrogen peroxide reacts with the binuclear center. W(334(I)) is converted to hydroxytryptophan as identified by reversed-phase HPLC-electrospray ionization tandem mass spectrometry analysis of peptides derived from the three SDS-PAGE purified subunits. Total sequence coverage of subunits I, II and III was limited to 84%, 66% and 54%, respectively. W(334(I)) is located on the surface of CcO at the membrane interface. Two other surface tryptophans within nuclear-encoded subunits, W(48(IV)) and W(19(VIIc)), are also oxidized when hydrogen peroxide reacts with the binuclear center (Musatov et al. (2004) Biochemistry 43, 1003-1009). Two aromatic-rich networks of amino acids were identified that link the binuclear center to the three oxidized tryptophans. We propose the following mechanism to explain these results. Electron transfer through the aromatic networks moves the free radicals generated at the binuclear center to the surface-exposed tryptophans, where they produce hydroxytryptophan.  相似文献   

4.
Blomberg MR  Siegbahn PE 《Biochemistry》2012,51(25):5173-5186
The catalytic mechanism of reduction of NO to N(2)O in the bacterial enzyme nitric oxide reductase has been investigated using hybrid density functional theory and a model of the binuclear center (BNC) based on the newly determined crystal structure. The calculations strongly suggest a so-called cis:b(3) mechanism, while the commonly suggested trans mechanism is found to be energetically unfavorable. The mechanism suggested here involves a stable cis-hyponitrite, and it is shown that from this intermediate one N-O bond can be cleaved without the transfer of a proton or an electron into the binuclear active site, in agreement with experimental observations. The fully oxidized intermediate in the catalytic cycle and the resting form of the enzyme are suggested to have an oxo-bridged BNC with two high-spin ferric irons antiferromagnetically coupled. Both steps of reduction of the BNC after N(2)O formation are found to be pH-dependent, also in agreement with experiment. Finally, it is found that the oxo bridge in the oxidized BNC can react with NO to give nitrite, which explains the experimental observations that the fully oxidized enzyme reacts with NO, and most likely also the observed substrate inhibition at higher NO concentrations.  相似文献   

5.
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in the inner membrane of mitochondria. It contains four metal redox centers, two of which, CuB and heme a3, form the binuclear center (BNC), where dioxygen is reduced to water. Crystal structures of CcO in various forms have been reported, from which ligand-binding states of the BNC and conformations of the protein matrix surrounding it have been deduced to elucidate the mechanism by which the oxygen reduction chemistry is coupled to proton translocation. However, metal centers in proteins can be susceptible to X-ray-induced radiation damage, raising questions about the reliability of conclusions drawn from these studies. Here, we used microspectroscopy-coupled X-ray crystallography to interrogate how the structural integrity of bovine CcO in the fully oxidized state (O) is modulated by synchrotron radiation. Spectroscopic data showed that, upon X-ray exposure, O was converted to a hybrid O∗ state where all the four metal centers were reduced, but the protein matrix was trapped in the genuine O conformation and the ligands in the BNC remained intact. Annealing the O∗ crystal above the glass transition temperature induced relaxation of the O∗ structure to a new R∗ structure, wherein the protein matrix converted to the fully reduced R conformation with the exception of helix X, which partly remained in the O conformation because of incomplete dissociation of the ligands from the BNC. We conclude from these data that reevaluation of reported CcO structures obtained with synchrotron light sources is merited.  相似文献   

6.
Structures of reaction intermediates of bovine cytochrome c oxidase (CcO) in the reactions of its fully reduced form with O2 and fully oxidized form with H2O2 were investigated with time-resolved resonance Raman (RR) and infrared spectroscopy. Six oxygen-associated RR bands were observed for the reaction of CcO with O2. The isotope shifts for an asymmetrically labeled dioxygen, (16)O(18)O, has established that the primary intermediate of cytochrome a3 is an end-on type dioxygen adduct and the subsequent intermediate (P) is an oxoiron species with Fe=O stretch (nu(Fe=O)) at 804/764 cm(-1) for (16)O2/(18)O2 derivatives, although it had been long postulated to be a peroxy species. The P intermediate is converted to the F intermediate with nu(Fe=O) at 785/751 cm(-1) and then to a ferric hydroxy species with nu(Fe-OH) at 450/425 cm(-1) (443/417 cm(-1) in D2O). The rate of reaction from P to F intermediates is significantly slower in D2O than in H2O. The reaction of oxidized CcO with H2O2 yields the same oxygen isotope-sensitive bands as those of P and F, indicating the identity of intermediates. Time-resolved infrared spectroscopy revealed that deprotonation of carboxylic acid side chain takes place upon deligation of a ligand from heme a3. UV RR spectrum gave a prominent band due to cis C=C stretch of phospholipids tightly bound to purified CcO.  相似文献   

7.
The interaction of protein serine/threonine phosphatase calcineurin (CaN) with superoxide and hydrogen peroxide was investigated. Superoxide specifically inhibited phosphatase activity of CaN toward RII (DLDVPIPGRFDRRVSVAAE) phosphopeptide in tissue and cell homogenates as well as the activity of the enzyme purified under reducing conditions. Hydrogen peroxide was an effective inhibitor of CaN at concentrations several orders of magnitude higher than superoxide. Inhibition by superoxide was calcium/calmodulin-dependent. Nitric oxide (NO) antagonized superoxide action on CaN. We provide kinetic and spectroscopic evidence that native, catalytically active CaN has a Fe(2+)-Zn(2+) binuclear center in its active site that is oxidized to Fe(3+)-Zn(2+) by superoxide and hydrogen peroxide. This oxidation is accompanied by a gain of manganese dependence of enzyme activity. CaN isolated by a conventional purification procedure was found in the oxidized, ferric enzyme form, and it became increasingly dependent on divalent cations. These results point to a complex redox regulation of CaN phosphatase activity by superoxide, which is modified by calcium, NO, and superoxide dismutase.  相似文献   

8.
The Fet3 protein (Fet3p) is a multinuclear copper oxidase essential for high-affinity iron uptake in yeast. Fet3p contains one type 1, one type 2, and a strongly antiferromagnetically coupled binuclear Cu(II)-Cu(II) type 3 copper. The type 2 and type 3 sites constitute a structurally distinct trinuclear cluster at which dioxygen is reduced to water. In Fet3p, as in ceruloplasmin, Fe(II) is oxidized to Fe(III) at the type 1 copper; this is the ferroxidase reaction that is fundamental to the physiologic function of these two enzymes. Using site-directed mutagenesis, we have generated type 1-depleted (T1D), type 2-depleted (T2D), and T1D/T2D mutants. None were active in the essential ferroxidase reaction catalyzed by Fet3p. However, the spectroscopic signatures of the remaining Cu(II) sites in any one of the three mutants were indistinguishable from those exhibited by the wild type. Although the native protein and the T1D mutant were isolated in the completely oxidized Cu(II) form, the T2D and T1D/T2D mutants were found to be completely reduced. This result is consistent with the essential role of the type 2 copper in dioxygen turnover, and with the suggestions that cuprous ion is the valence state of intracellular copper. Although stable to dioxygen, the Cu(I) sites in both proteins were readily oxidized by hydrogen peroxide. The double mutant was extensively analyzed by X-ray absorption spectroscopy. Edge and near-edge features clearly distinguished the oxidized from the reduced form of the binuclear cluster. EXAFS was strongly consistent with the expected coordination of each type 3 copper by three histidine imidazoles. Also, copper scattering was observed in the oxidized cluster along with scattering from a ligand corresponding to a bridging oxygen. The data derived from the reduced cluster indicated that the bridge was absent in this redox state. In the reduced form of the double mutant, an N/O ligand was apparent that was not seen in the reduced form of the T1D protein. This ligand in T1D/T2D could be either the remaining type 2 copper imidazole ligand (from His416) or a water molecule that could be stabilized at the type 3 cluster by H-bonding to this side chain. If present in the native protein, this H(2)O could provide acid catalysis of dioxygen reduction at the reduced trinuclear center.  相似文献   

9.
The reaction of cytochrome c oxidase with hydrogen peroxide has been of great value in generating and characterizing oxygenated species of the enzyme that are identical or similar to those formed during turnover of the enzyme with dioxygen. Most previous studies have utilized relatively low peroxide concentrations (millimolar range). In the current work, these studies have been extended to the examination of the kinetics of the single turnover of the fully reduced enzyme using much higher concentrations of peroxide to avoid limitations by the bimolecular reaction. The flow-flash method is used, in which laser photolysis of the CO adduct of the fully reduced enzyme initiates the reaction following rapid mixing of the enzyme with peroxide, and the reaction is monitored by observing the absorbance changes due to the heme components of the enzyme. The following reaction sequence is deduced from the data. (1) The initial product of the reaction appears to be heme a(3) oxoferryl (Fe(4+)=O(2)(-) + H(2)O). Since the conversion of ferrous to ferryl heme a(3) (Fe(2+) to Fe(4+)) is sufficient for this reaction, presumably Cu(B) remains reduced in the product, along with Cu(A) and heme a. (2) The second phase of the reaction is an internal rearrangement of electrons and protons in which the heme a(3) oxoferryl is reduced to ferric hydroxide (Fe(3+)OH(-)). In about 40% of the population, the electron comes from heme a, and in the remaining 60% of the population, Cu(B) is oxidized. This step has a time constant of about 65 micros. (3) The third apparent phase of the reaction includes two parallel reactions. The population of the enzyme with an electron in the binuclear center reacts with a second molecule of peroxide, forming compound F. The population of the enzyme with the two electrons on heme a and Cu(A) must first transfer an electron to the binuclear center, followed by reaction with a second molecule of peroxide, also yielding compound F. In each of these reaction pathways, the reaction time is 100-200 micros, i.e., much faster than the rate of reaction of peroxide with the fully oxidized enzyme. Thus, hydrogen peroxide is an efficient trap for a single electron in the binuclear center. (4) Compound F is then reduced by the final available electron, again from heme a, at the same rate as observed for the reduction of compound F formed during the reaction of the fully reduced oxidase with dioxygen. The product is the fully oxidized enzyme (heme a(3) Fe(3+)OH(-)), which reacts with a third molecule of hydrogen peroxide, forming compound P. The rate of this final reaction step saturates at high concentrations of peroxide (V(max) = 250 s(-)(1), K(m) = 350 mM). The data indicate a reaction mechanism for the steady-state peroxidase activity of the enzyme which, at pH 7.5, proceeds via the single-electron reduction of the binuclear center followed by reaction with peroxide to form compound F directly, without forming compound P. Peroxide is an efficient trap for the one-electron-reduced state of the binuclear center. The results also suggest that the reaction of hydrogen peroxide to the fully oxidized enzyme may be limited by the presence of hydroxide associated with the heme a(3) ferric species. The reaction of hydrogen peroxide with heme a(3) is very substantially accelerated by the availability of an electron on heme a, which is presumably transferred to the binuclear center concomitant with a proton that can convert the hydroxide to water, which is readily displaced.  相似文献   

10.
The reaction of cytochrome c oxidase (COX) from Rhodobacter sphaeroides with hydrogen peroxide has been studied at alkaline (pH 8.5) and acidic (pH 6.5) conditions with the aid of a stopped-flow apparatus. Absorption changes in the entire 350-800 nm spectral range were monitored and analyzed by a global fitting procedure. The reaction can be described by the sequential formation of two intermediates analogous to compounds I and II of peroxidases: oxidized COX + H2O2 --> intermediate I --> intermediate II. At pH as high as 8.5, intermediate I appears to be a mixture of at least two species characterized by absorption bands at approximately 607 nm (P607) and approximately 580 nm (F-I580) that rise synchronously. At acidic pH (6.5), intermediate I is represented mainly by a component with an alpha-peak around 575 nm (F-I575) that is probably equivalent to the so-called F* species observed with the bovine COX. The data are consistent with a pH-dependent reaction branching at the step of intermediate I formation. To get further insight into the mechanism of the pH-dependence, the peroxide reaction was studied using two mutants of the R. sphaeroides oxidase, K362M and D132N, that block, respectively, the proton-conducting K- and D-channels. The D132N mutation does not affect significantly the Ox --> intermediate I step of the peroxide reaction. In contrast, K362M replacement exerts a dramatic effect, eliminating the pH-dependence of intermediate I formation. The data obtained allow us to propose that formation of the acidic form of intermediate I (F-I575, F*) requires protonation of some group at/near the binuclear site that follows or is concerted with peroxide binding. The protonation involves specifically the K-channel. Presumably, a proton vacancy can be generated in the site as a consequence of the proton-assisted heterolytic scission of the O-O bond of the bound peroxide. The results are consistent with a proposal [Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry 37, 3053-3061] that the K-channel may be involved in the delivery of the first four protons in the catalytic cycle (starting from reduction of the oxidized form) including proton uptake coupled to reduction of the binuclear site and transfer of protons driven by cleavage of the dioxygen O-O bond in the binculear site. Once peroxide intermediate I has been formed, generation of a strong oxene ligand at the heme a3 iron triggers a transition of the enzyme to the "peroxidase conformation" in which the K-channel is closed and the binuclear site becomes protonically disconnected from the bulk aqueous phase.  相似文献   

11.
Benson DE  Haddy AE  Hellinga HW 《Biochemistry》2002,41(9):3262-3269
Computational protein design methods were used to identify mutations that are predicted to introduce a binuclear copper center coordinated by six histidines, replacing the maltose-binding site in Escherichia coli maltose-binding protein (MBP) with an oxygen-binding site. A small family of five candidate designs consisting of 9 to 10 mutations each was constructed by oligonucleotide-directed mutagenesis. These mutant proteins were expressed and purified, and their stability, copper- and cobalt-binding properties, and interactions of the resulting metalloprotein complexes with azide, hydrogen peroxide, and dioxygen were characterized. We identified one 10-fold mutant, MBP.Hc.E, that can form Cu(II)(2) and Co(II)(2) complexes that interact with H(2)O(2) and O(2). The Co(II)(2) protein reacts with H(2)O(2) to form a complex that is spectroscopically similar to a synthetic model that structurally mimics the oxy-hemocyanin core, whereas the Cu(II)(2) protein reacted with O(2) or H(2)O(2) does not. We postulate that the equilibrium between the open and closed conformations of MBP allows species with variable Cu-Cu distances to form, and that such species can bind ligands in geometries that are not observed in natural type III centers. Introduction of one additional mutation in the hinge region of MBP, I329F, known to favor formation of the closed state, results in a binuclear copper center that when reacted with low concentrations of H(2)O(2) mimics the spectroscopic signature of oxy-hemocyanin.  相似文献   

12.
The mechanism of electron coupled proton transfer in cytochrome c oxidase (CcO) is still poorly understood. The P(M)-intermediate of the catalytic cycle is an oxoferryl state whose generation requires one additional electron, which cannot be provided by the two metal centres. The missing electron has been suggested to be donated to this binuclear site by a tyrosine residue. A tyrosine radical species has been detected in the P(M) and F* intermediates (formed by addition of H2O2) of the Paraccocus denitrificans CcO using electron paramagnetic resonance (EPR) spectroscopy. From the study of conserved variants its origin was determined to be Y167 which is surprising as this residue is not part of the active site. Upon inspection of the active site it becomes evident that W272 could be the actual donor of the missing electron, which can then be replenished from Y167 or from the Y280-H276 cross link in the natural cycle. To address the question, whether such a direct electron transfer pathway to the binuclear centre exists two tryptophan 272 variants in subunit I have been generated. These variants are characterised by their turnover rates as well as using EPR and optical spectroscopy. From these experiments it is concluded, that W272 is an important intermediate in the formation of the radical species appearing in P(M) and F* intermediates produced with hydrogen peroxide. The significance of this finding for the catalytic function of the enzyme is discussed.  相似文献   

13.
An interaction between cytochrome a in oxidized cytochrome c oxidase (CcO) and anions has been characterized by EPR spectroscopy. Those anions that affect the EPR g = 3 signal of cytochrome a can be divided into two groups. One group consists of halides (Cl-, Br-, and I-) and induces an upfield shift of the g = 3 signal. Nitrogen-containing anions (CN-, NO2-, N3-, NO3-) are in the second group and shift the g = 3 signal downfield. The shifts in the EPR spectrum of CcO are unrelated to ligand binding to the binuclear center. The binding properties of one representative from each group, azide and chloride, were characterized in detail. The dependence of the shift on chloride concentration is consistent with a single binding site in the isolated oxidized enzyme with a Kd of approximately 3 mm. In mitochondria, the apparent Kd was found to be about four times larger than that of the isolated enzyme. The data indicate it is the chloride anion that is bound to CcO, and there is a hydrophilic size-selective access channel to this site from the cytosolic side of the mitochondrial membrane. An observed competition between azide and chloride is interpreted by azide binding to three sites: two that are apparent in the x-ray structure plus the chloride-binding site. It is suggested that either Mg2+ or Arg-438/Arg-439 is the chloride-binding site, and a mechanism for the ligand-induced shift of the g = 3 signal is proposed.  相似文献   

14.
In the presence of substrates not favourable for hydroxylation, more than 80% of the dioxygen consumed by purified, reconstituted 4-methoxybenzoate monooxygenase appears in the reaction mixture as hydrogen peroxide. We have investigated whether under these conditions (a) reduced putidamonooxin, the oxygenase of this enzyme system, either autoxidizes in the presence of dioxygen, with liberation of superoxide anion radicals which then disproportionate to H2O2 and O2, or (b) dioxygen is reduced by two sequential single-electron steps leading to the active oxygen species that forms hydrogen peroxide directly when inactivated by protonation. Quantitative estimation of O-2 radicals, with either succinylated ferricytochrome c or epinephrine used as O-2 scavengers, revealed that only about 6% of the total electron flux channelled via putidamonooxin to dioxygen led to the monovalent reduction on dioxygen. This means that not more than 3% of the hydrogen peroxide found under uncoupling conditions arises from the rapid bimolecular disproportionation of initially formed O-2 radicals. Inconsistent results were obtained when lactoperoxidase was used as an O-2 trap. Our measurements indicate that the conversion of lactoperoxidase into compound III is an inappropriate method of detecting any O-2 radicals that may be found by the uncoupled 4-methoxybenzoate monooxygenase. The stoichiometry of about 1:1 for O2 uptake: H2O2 formation indicates that under uncoupling conditions H2O is virtually not formed. The role of [FeO2]+ as the active oxygenating species of putidamonooxin is discussed.  相似文献   

15.
Cytochrome c oxidase is a transmembrane proton pump that builds an electrochemical gradient using chemical energy from the reduction of O(2). Ionization states of all residues were calculated with Multi-Conformation Continuum Electrostatics (MCCE) in seven anaerobic oxidase redox states ranging from fully oxidized to fully reduced. One long-standing problem is how proton uptake is coupled to the reduction of the active site binuclear center (BNC). The BNC has two cofactors: heme a(3) and Cu(B). If the protein needs to maintain electroneutrality, then 2 protons will be bound when the BNC is reduced by 2 electrons in the reductive half of the reaction cycle. The effective pK(a)s of ionizable residues around the BNC are evaluated in Rhodobacter sphaeroides cytochrome c oxidase. At pH 7, only a hydroxide coordinated to Cu(B) shifts its pK(a) from below 7 to above 7 and so picks up a proton when heme a(3) and Cu(B) are reduced. Glu I-286, Tyr I-288, His I-334, and a second hydroxide on heme a(3) all have pK(a)s above 7 in all redox states, although they have only 1.6-3.5 DeltapK units energy cost for deprotonation. Thus, at equilibrium, they are protonated and cannot serve as proton acceptors. The propionic acids near the BNC are deprotonated with pK(a)s well below 7. They are well stabilized in their anionic state and do not bind a proton upon BNC reduction. This suggests that electroneutrality in the BNC is not maintained during the anaerobic reduction. Proton uptake on reduction of Cu(A), heme a, heme a(3), and Cu(B) shows approximately 2.5 protons bound per 4 electrons, in agreement with prior experiments. One proton is bound by a hydroxyl group in the BNC and the rest to groups far from the BNC. The electrochemical midpoint potential (E(m)) of heme a is calculated in the fully oxidized protein and with 1 or 2 electrons in the BNC. The E(m) of heme a shifts down when the BNC is reduced, which agrees with prior experiments. If the BNC reduction is electroneutral, then the heme a E(m) is independent of the BNC redox state.  相似文献   

16.
Fabian M  Skultety L  Brunel C  Palmer G 《Biochemistry》2001,40(20):6061-6069
A comparison of bovine cytochrome c oxidase isolated in the presence and the absence of chloride salts reveals that only enzyme isolated in the presence of chloride salts is a mixture of a complex of oxidized enzyme with chloride (CcO.Cl) and chloride-free enzyme (CcO). Using a spectrophotometric method for chloride determination, it was shown that CcO.Cl contains one chloride ion that is released into the medium by a single turnover or by cyanide binding. Chloride is bound slowly within the heme a(3)-Cu(B) binuclear center of oxidized enzyme in a manner similar to the binding of azide. The pH dependence of the dissociation constant for the formation of the CcO.Cl complex reveals that chloride binding proceeds with the uptake of one proton. With both forms of the enzyme the dependence of the rate of reaction for cyanide binding upon cyanide concentration asymptotes a limiting value indicating the existence of an intermediate. With CcO.Cl this limiting rate is 10(3) higher than the rate of the spontaneous dissociation of chloride from the binuclear center and we propose that the initial step is the coordination of cyanide to Cu(B) and in this intermediate state the rate of dissociation of chloride is substantially enhanced.  相似文献   

17.
Q Su  J P Klinman 《Biochemistry》1999,38(26):8572-8581
Glucose oxidase catalyzes the oxidation of glucose by molecular dioxygen, forming gluconolactone and hydrogen peroxide. A series of probes have been applied to investigate the activation of dioxygen in the oxidative half-reaction, including pH dependence, viscosity effects, 18O isotope effects, and solvent isotope effects on the kinetic parameter Vmax/Km(O2). The pH profile of Vmax/Km(O2) exhibits a pKa of 7.9 +/- 0.1, with the protonated enzyme form more reactive by 2 orders of magnitude. The effect of viscosogen on Vmax/Km(O2) reveals the surprising fact that the faster reaction at low pH (1.6 x 10(6) M-1 s-1) is actually less diffusion-controlled than the slow reaction at high pH (1.4 x 10(4) M-1 s-1); dioxygen reduction is almost fully diffusion-controlled at pH 9.8, while the extent of diffusion control decreases to 88% at pH 9.0 and 32% at pH 5.0, suggesting a transition of the first irreversible step from dioxygen binding at high pH to a later step at low pH. The puzzle is resolved by 18O isotope effects. 18(Vmax/Km) has been determined to be 1.028 +/- 0.002 at pH 5.0 and 1.027 +/- 0.001 at pH 9.0, indicating that a significant O-O bond order decrease accompanies the steps from dioxygen binding up to the first irreversible step at either pH. The results at high pH lead to an unequivocal mechanism; the rate-limiting step in Vmax/Km(O2) for the deprotonated enzyme is the first electron transfer from the reduced flavin to dioxygen, and this step accompanies binding of molecular dioxygen to the active site. In combination with the published structural data, a model is presented in which a protonated active site histidine at low pH accelerates the second-order rate constant for one electron transfer to dioxygen through electrostatic stabilization of the superoxide anion intermediate. Consistent with the proposed mechanisms for both high and low pH, solvent isotope effects indicate that proton transfer steps occur after the rate-limiting step(s). Kinetic simulations show that the model that is presented, although apparently in conflict with previous models for glucose oxidase, is in good agreement with previously published kinetic data for glucose oxidase. A role for electrostatic stabilization of the superoxide anion intermediate, as a general catalytic strategy in dioxygen-utilizing enzymes, is discussed.  相似文献   

18.
Interactions of azide ion with bovine heart cytochrome c oxidase (CcO) at five redox levels (IV) to (0), obtained by zero to four electron reduction of fully oxidized enzyme CcO(IV), were monitored by infrared and visible/Soret spectra. Partially reduced CcO gave three azide asymmetric stretch band at 2040, 2016, and 2004 cm-1 for CcO(III)N3 and two at 2040 and 2016 cm-1 for CcO(II)N3 and CcO(I)N3. Resting CcO(IV) reacts with N3- to give one band at 2041 cm-1 assigned to CuB2+N3 and another at 2051 cm-1 to N3- that is associated with protein but is not bound to a metal ion. At high azide concentrations the weak association of many azide molecules with non-metal protein sites was observed at all redox levels. These findings provide direct evidence for 1) N3- binding to CuB as well as Fea3 in partially reduced enzyme, but no binding to Fea3 in fully oxidized enzyme and no binding to either metal in fully reduced enzyme; 2) a long range effect of the oxidation state of Fea or CuA on ligand binding at heme a3, but not at CuB; and 3) an insensitivity of either Fea3 or CuB ligand site to changes in ligand or oxidation state at the other site. The observed independence of the Fea3 and CuB sites provides further support for Fea3(3)+ OOH, rather than Fea3(3)+ OOCuB2+, as an intermediate in the reduction of O2 to water by the oxidase.  相似文献   

19.
Chen YR  Deterding LJ  Tomer KB  Mason RP 《Biochemistry》2000,39(15):4415-4422
Previous studies established that the cyanyl radical ((*)CN), detected as 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(*)CN by the electron spin resonance (ESR) spin-trapping technique, can be generated by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H(2)O(2)) and by mitochondrial cytochrome c oxidase (CcO) in the absence of H(2)O(2). To investigate the mechanism of inhibition by cyanyl radical, we isolated and characterized the iron protoporphyrin IX and heme a from the reactions of CN(-) with HRP and CcO, respectively. The purified heme from the reaction mixture of HRP/H(2)O(2)/KCN was unambiguously identified as cyanoheme by the observation of the protonated molecule, (M + H)(+), of m/z = 642.9 in the matrix-assisted laser desorption/ionization (MALDI) mass spectrum. The proton NMR spectrum of the bipyridyl ferrous cyanoheme complex revealed that one of the four meso protons was missing and had been replaced with a cyanyl group, indicating that the single, heme-derived product was meso-cyanoheme. The holoenzyme of HRP from the reconstitution of meso-cyanoheme with the apoenzyme of HRP (apoHRP) showed no detectable catalytic activity. The Soret peak of cyanoheme-reconstituted apoHRP was shifted to 411 nm from the 403 nm peak of native HRP. In contrast, the heme a isolated from partially or fully inhibited CcO did not show any change in the structure of the protoporphyrin IX as indicated by its MALDI mass spectrum, which showed an (M + H)(+) of m/z = 853.6, and by its pyridine hemochromogen spectrum. However, a protein-centered radical on the CcO can be detected in the reaction of CcO with cyanide and was identified as the thiyl radical(s) based on inhibition of its formation by N-ethylmaleimide pretreatment, suggesting that the protein matrix rather than protoporphyrin IX was attacked by the cyanyl radical. In addition to the difference in heme structures between HRP and CcO, the available crystallographic data also suggested that the distinct heme environments may contribute to the different inhibition mechanisms of HRP and CcO by cyanyl radical.  相似文献   

20.
All 13 lipids, including two cardiolipins, one phosphatidylcholine, three phosphatidylethanolamines, four phosphatidylglycerols and three triglycerides, were identified in a crystalline bovine heart cytochrome c oxidase (CcO) preparation. The chain lengths and unsaturated bond positions of the fatty acid moieties determined by mass spectrometry suggest that each lipid head group identifies its specific binding site within CcOs. The X-ray structure demonstrates that the flexibility of the fatty acid tails facilitates their effective space-filling functions and that the four phospholipids stabilize the CcO dimer. Binding of dicyclohexylcarbodiimide to the O(2) transfer pathway of CcO causes two palmitate tails of phosphatidylglycerols to block the pathway, suggesting that the palmitates control the O(2) transfer process.The phosphatidylglycerol with vaccenate (cis-Delta(11)-octadecenoate) was found in CcOs of bovine and Paracoccus denitrificans, the ancestor of mitochondrion, indicating that the vaccenate is conserved in bovine CcO in spite of the abundance of oleate (cis-Delta(9)-octadecenoate). The X-ray structure indicates that the protein moiety selects cis-vaccenate near the O(2) transfer pathway against trans-vaccenate. These results suggest that vaccenate plays a critical role in the O(2) transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号