首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The current best candidates for Arabidopsis thaliana clock components are CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and its homolog LHY (LATE ELONGATED HYPOCOTYL). In addition, five members of a small family, PSEUDO-RESPONSE REGULATORS (including PRR1, PRR3, PRR5, PRR7 and PRR9), are believed to be another type of clock component. The originally described member of PRRs is TOC1 (or PRR1) (TIMING OF CAB EXPRESSION 1). Interestingly, seedlings of A. thaliana carrying a certain lesion (i.e. loss-of-function or misexpression) of a given clock-associated gene commonly display a characteristic phenotype of light response during early photomorphogenesis. For instance, cca1 lhy double mutant seedlings show a shorter hypocotyl length than the wild type under a given fluence rate of red light (i.e. hypersensitivity to red light). In contrast, both toc1 single and prr7 prr5 double mutant seedlings with longer hypocotyls are hyposensitive under the same conditions. These phenotypes are indicative of linkage between the circadian clock and red light signal transduction mechanisms. Here this issue was addressed by conducting combinatorial genetic and epistasis analyses with a large number of mutants and transgenic lines carrying lesions in clock-associated genes, including a cca1 lhy toc1 triple mutant and a cca1 lhy prr7 prr5 quadruple mutant. Taking these results together, we propose a genetic model for clock-associated red light signaling, in which CCA1 and LHY function upstream of TOC1 (PRR1) in a negative manner, in turn, TOC1 (PRR1) serves as a positive regulator. PRR7 and PRR5 also act as positive regulators, but independently from TOC1 (PRR1). It is further suggested that these signaling pathways are coordinately integrated into the phytochrome-mediated red light signal transduction pathway, in which PIF3 (PHYTOCHROME-INTERACTING FACTOR 3) functions as a negative regulator immediately downstream of phyB.  相似文献   

12.
13.
14.
15.
16.
17.
The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution.  相似文献   

18.
19.
20.
MYB transcription factors in the Arabidopsis circadian clock   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号