首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-methyl-D-aspartate (NMDA) receptor is a calcium-permeable ionotropic glutamate receptor and plays a role in many neurologic disorders such as brain ischemia through its involvement in excitotoxicity. We have performed differential display PCR to identify changes in gene expression that occur in the hippocampus of the mouse brain after intraperitoneal injection of NMDA and identified a gene, Tex261 as an inducible gene by NMDA stimulation in vivo. Tex261 mRNA was gradually induced in response to NMDA and reached about 4.5-fold at 24 h. When HEK 293 cells are transfected with NMDA receptors, the cells die in a manner that mimics excitotoxicity in neurons. HEK 293 cells transfected with the combination of Tex261 and the NMDA receptors NR1/NR2A produced the greater cell death compared with the cells transfected with the NMDA receptors alone. These findings suggest that Tex261 modulates the excitotoxic cell death induced by NMDA receptor activation.  相似文献   

2.
Protein kinase C (PKC) phosphorylates the NR1 and NR2A subunits of NMDARs at consensus sites located within their intracellular C-terminal tails. However, the functional consequences of these biochemical events are not well understood. In HEK293 cells expressing NR1/NR2A, activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate (PMA) increased NMDAR desensitization as evidenced by a reduced steady-state current without any change in peak. The effects of PMA on NMDAR-mediated responses were prevented by specific PKC inhibitors and were not mimicked by an inactive enantiomer of PMA. The effects of PMA were preserved despite mutagenesis of the major PKC sites on the NR1 subunit (S889A, S890A, S896A and S897A) or removal of the entire NR1 C-terminal tail (NR1(stop838)). When co-expressing NR1(stop838)/NR2A the effects of PMA could only be observed with agonist concentrations sufficient to induce glycine-insensitive desensitization. Moreover, the effects of PMA were observed in receptors composed of NR1/NR2A and NR1/NR2B, but not NR1/NR2C, a subunit combination in which desensitization is absent. The NR2 subunit dependence suggested that the actions of PMA might require specific PKC sites previously identified within NR2A. However, a C-terminal truncated form of NR2A (NR2A(stop905)) remained responsive to PMA. We conclude that activation of PKC increases NMDAR glycine-insensitive desensitization independently of previously identified sites located within the NR1 C-terminus and distal segment of the NR2A C-terminus.  相似文献   

3.
Abstract: Ion flux through native N-methyl-d -aspartate (NMDA) receptors is inhibited by behaviorally relevant concentrations of ethanol (10–100 mM) in a variety of neuronal preparations. However, in animal tissues, it is often difficult to determine accurately which NMDA receptor subunits are responsible for the observed effect. In this study, human embryonic kidney 293 (HEK 293) cells normally devoid of NMDA receptors were transiently transfected with cDNA expression plasmids coding for specific rat NMDA receptor subunits. Brief application of an NMDA/glycine solution to cells markedly increased intracellular calcium in cells transfected with NR1/NR2A, NR1/NR2B, or NR1/NR2A/NR2B as measured by fura-2 calcium imaging. This increase was both NMDA- and glycine-dependent and was inhibited by competitive and noncompetitive NMDA antagonists, including 2-amino-5-phosphopentanoic acid and MK-801. The NR2B-selective antagonist ifenprodil inhibited responses in cells transfected with NR1/NR2B or NR1/NR2A/NR2B, but not NR1/NR2A subunits. Increasing the transfection ratio of NR2B versus NR2A subunit in NR1/NR2A/NR2B-transfected cells greatly increased their ifenprodil sensitivity. Acute exposure to ethanol (25–100 mM) inhibited the NMDA-mediated increase in intracellular calcium in a dose-dependent manner without affecting basal calcium concentrations. There were no statistically significant differences in ethanol's potency or maximal inhibition between any of the subunit combinations tested. HEK 293 cells transfected with NR1/NR2A/NR2B subunits showed an enhanced sensitivity to ifenprodil following a 24-h exposure to concentrations of ethanol of 50 mM and greater. The enhanced ifenprodil sensitivity following ethanol exposure was not associated with changes in NR1, NR2A, or NR2B immunoreactivity. In contrast to results obtained in transfected HEK 293 cells, no effect of chronic ethanol was observed in oocytes expressing NR1/NR2A/NR2B subunits. These results demonstrate that recombinant NMDA receptors expressed in HEK 293 cells form functional receptors that, like native receptors, are sensitive to modulation by both acute and chronic ethanol treatment.  相似文献   

4.
Protein kinase D (PKD) is a protein serine kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids, and activated by phorbol esters, neuropeptides, and platelet-derived growth factor via protein kinase C (PKC) in intact cells. Recently, oxidative stress was shown to activate transfected PKC isoforms via tyrosine phosphorylation, but PKD activation was not demonstrated. Here, we report that oxidative stress initiated by addition of H(2)O(2) (0.15-10 mm) to quiescent Swiss 3T3 fibroblasts activates PKD in a dose- and time- dependent manner, as measured by autophosphorylation and phosphorylation of an exogenous substrate, syntide-2. Oxidative stress also activated transfected PKD in COS-7 cells but not a kinase-deficient mutant PKD form or a PKD mutant with critical activating serine residues 744 and 748 mutated to alanines. Genistein, or the specific Src inhibitors PP-1 and PP-2 (1-10 micrometer) inhibited H(2)O(2)-mediated PKD activation by 45%, indicating that Src contributes to this signaling pathway. PKD activation by H(2)O(2) was also selectively potentiated by cotransfection of PKD together with an active form of Src (v-Src) in COS-7 cells, as compared with PDB-mediated activation. The specific phospholipase C inhibitor, partly blocked H(2)O(2)-mediated but not PDB-mediated PKD activation. In contrast, PKC inhibitors blocked H(2)O(2) or PDB-mediated PKD activation essentially completely, suggesting that whereas Src mediates part of its effects via phospholipase C activation, PKC acts more proximally as an upstream activator of PKD. Together, these studies reveal that oxidative stress activates PKD by initiating distinct Src-dependent and -independent pathways involving PKC.  相似文献   

5.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

6.
Tumor promotion by depleting cells of protein kinase C delta.   总被引:5,自引:2,他引:3       下载免费PDF全文
Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function.  相似文献   

7.
The ‘cross‐talk’ between different types of neurotransmitters through second messenger pathways represents a major regulatory mechanism in neuronal function. We investigated the effects of activation of protein kinase C (PKC) on cAMP‐dependent signaling by structurally related human D1‐like dopaminergic receptors. Human embryonic kidney 293 (HEK293) cells expressing D1 or D5 receptors were pretreated with phorbol‐12‐myristate‐13‐acetate (PMA), a potent activator of PKC, followed by analysis of dopamine‐mediated receptor activation using whole cell cAMP assays. Unpredictably, PKC activation had completely opposite effects on D1 and D5 receptor signaling. PMA dramatically augmented agonist‐evoked D1 receptor signaling, whereas constitutive and dopamine‐mediated D5 receptor activation were rapidly blunted. RT–PCR and immunoblotting analyses showed that phorbol ester‐regulated PKC isozymes (conventional: α, βI, βII, γ; novel: δ, ?, η, θ) and protein kinase D (PKCµ) are expressed in HEK293 cells. PMA appears to mediate these contrasting effects through the activation of Ca2+‐independent novel PKC isoforms as revealed by specific inhibitors, bisindolylmaleimide I, Gö6976, and Gö6983. The finding that cross‐talk between PKC and cAMP pathways can produce such opposite outcomes following the activation of structurally similar D1‐like receptor subtypes is novel and further strengthens the view that D1 and D5 receptors serve distinct functions in the mammalian nervous and endocrine systems.  相似文献   

8.
The NR1 subunit of the NMDA receptor has two serines (S890 and S896) whose phosphorylation by protein kinase C (PKC) differentially modulates NMDA receptor trafficking and clustering. It is not known which PKC isoforms phosphorylate these serines. In primary cultures of cerebellar neurons, we examined which PKC isoforms are responsible for the phosphorylation S890 and S896. We used specific inhibitors of PKC isoforms and antibodies recognizing specifically phosphorylated S890 or S896. The results show that PKC alpha phosphorylates preferentially S896 and PKC gamma preferentially S890. Activation of type I metabotropic glutamate receptors (mGluRs) with DHPG (3,5-dihyidroxy-phenylglycine) activates PKC gamma but not PKC alpha or beta. We found that activation of mGluRs by DHPG increases S890 but not S896 phosphorylation, supporting a role for PKC gamma in the physiological modulation of S890 phosphorylation. It is also shown that the pool of NR1 subunits present in the membrane surface contains phosphorylated S890 but not phosphorylated S896. This supports that differential phosphorylation of S890 and S896 by different PKC isoforms modulates cellular distribution of NMDA receptors and may also contribute to the selective modulation of NMDA receptor function and intracellular localization.  相似文献   

9.
The goal of the current study, conducted in freshly isolated thymocytes was (1) to investigate the possibility that the activation of poly(ADP-ribose) polymerase-1 (PARP-1) in an intact cell can be regulated by protein kinase C (PKC) mediated phosphorylation and (2) to examine the consequence of this regulatory mechanism in the context of cell death induced by the genotoxic agent. In cells stimulated by the PKC activating phorbol esters, DNA breakage was unaffected, PARP-1 was phosphorylated, 1-methyl-3-nitro-1-nitrosoguanidine-induced PARP activation and cell necrosis were suppressed, with all these effects attenuated by the PKC inhibitors GF109203X or G?6976. Inhibition of cellular PARP activity by PKC-mediated phosphorylation may provide a plausible mechanism for the previously observed cytoprotective effects of PKC activators.  相似文献   

10.
PKC, a major target for the tumor-promoting phorbol esters, has been implicated in the signal transduction pathways that mediate important functions in intestinal epithelial cells, including proliferation and carcinogenesis. With the use of IEC-18 cells arrested in G0/G1, addition of phorbol esters resulted in a modest increase in [3H]thymidine incorporation and a slight shift toward the S and G2/M phases of the cell cycle, whereas the combination of EGF and phorbol 12,13-dibutyrate (PDB) synergistically stimulated DNA synthesis. To investigate the effects of receptor-mediated PKC activation on mitogenesis, we demonstrated that ANG II induced ERK activation, a response completely blocked by pretreatment with mitogen/extracellular signal-regulated kinase inhibitors or specific PKC inhibitors. Furthermore, ANG II stimulated an over threefold increase in [3H]thymidine incorporation that was corroborated by flow cytometric analysis of the cell cycle to levels comparable to that achieved by the combination of EGF and PDB. Taken together, our results indicate that receptor-mediated PKC activation, as induced by ANG II, transduces mitogenic signals leading to DNA synthesis and cell proliferation in IEC-18 cells.  相似文献   

11.
Treatment of cells with tumor-promoting phorbol esters results in the activation but then depletion of phorbol ester-responsive protein kinase C (PKC) isoforms. The ubiquitin-proteasome pathway has been implicated in regulating the levels of many cellular proteins, including those involved in cell cycle control. We report here that in 3Y1 rat fibroblasts, proteasome inhibitors prevent the depletion of PKC isoforms α, δ, and in response to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Proteasome inhibitors also blocked the tumor-promoting effects of TPA on 3Y1 cells overexpressing c-Src, which results from the depletion of PKC δ. Consistent with the involvement of the ubiquitin-proteasome pathway in the degradation of PKC isoforms, ubiquitinated PKC α, δ, and were detected within 30 min of TPA treatment. Diacylglycerol, the physiological activator of PKC, also stimulated ubiquitination and degradation of PKC, suggesting that ubiquitination is a physiological response to PKC activation. Compounds that inhibit activation of PKC prevented both TPA- and diacylglycerol-induced PKC depletion and ubiquitination. Moreover, a kinase-dead ATP-binding mutant of PKC α could not be depleted by TPA treatment. These data are consistent with a suicide model whereby activation of PKC triggers its own degradation via the ubiquitin-proteasome pathway.  相似文献   

12.
Noh KM  Lee JC  Ahn YH  Hong SH  Koh JY 《IUBMB life》1999,48(3):263-269
While effectively attenuating neuronal apoptosis in mouse cortical culture, insulin paradoxically induced neuronal necrosis with 48 h of exposure. The insulin neurotoxicity was blocked by an antioxidant but not by caspase inhibitors. Exposure to insulin led to tyrosine phosphorylation of the insulin receptor and the insulin-like growth factor-1 (IGF-1) receptor and activation of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3-kinase). Inhibitors of tyrosine kinase and PKC, but not PI3-kinase, attenuated the insulin neurotoxicity. Conversely, the inhibitor of PI3-kinase but not PKC reversed the antiapoptotic effect of insulin. Suggesting that the gene activity-dependent emergence of excitotoxicity contributed to insulin neurotoxicity, macromolecule synthesis inhibitors and N-methyl-D-aspartate (NMDA) antagonists blocked it. Consistently, exposure to insulin increased the level of the NR2A subunit of the NMDA receptor without much altering NR1 or NR2B levels. The present study suggests that insulin can be both neuroprotective and neurotoxic in the same cell system but by way of different signaling cascades.  相似文献   

13.
Previous studies in neurons have demonstrated a rapid decrease in NMDA receptor currents following tyrosine kinase inhibition or exposure to platelet-derived growth factor (PDGF). Inhibitors of protein kinase A (PKA) block the PDGF-induced rundown suggesting a multistep pathway that leads to decreased amplitudes of NMDA-activated currents. In this study, HEK293 cells expressing different NMDA receptor subunits were used to study the effects of prostacyclin receptor-mediated PKA activation on the magnitude of glutamate-activated currents. The prostacyclin agonist iloprost induced a rapid and time-dependent depression of otherwise stable glutamate-activated currents in cells expressing NR1-2a/2A or NR1-2a/2D receptors but not NR1-2a/2B or NR1-2a/2C receptors. This rundown was prevented by treatment of cells with the PKA inhibitor H89. The iloprost effect persisted in cells coexpressing NR1-2a/2A receptors and either wild-type or mutant Src kinase (SrcS17A). Co-expression of PSD-95 with NR1-2a/2A receptors reduced but did not eliminate the extent of rundown. Iloprost also produced current rundown in cells expressing NR1-2a and a C-terminal truncated NR2A subunit (NR2A1050stop) but not in those transfected with an NR2A tyrosine mutant (Y842F). The iloprost-induced rundown of wild-type NR1-2a/2A receptors was prevented by prior exposure of cells to hypertonic sucrose. These results suggest that PKA influences the functional activity of NMDA receptors in an NR2 subunit-selective fashion.  相似文献   

14.
The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, which plays crucial roles in synaptic plasticity and development. We have recently shown that potentiation of NMDA receptor function by protein kinase C (PKC) appears to be mediated via activation of non-receptor tyrosine kinases. The aim of this study was to test whether this effect could be mediated by direct tyrosine phosphorylation of the NR2A or NR2B subunits of the receptor. Following treatment of rat hippocampal CA1 mini-slices with 500 nM phorbol 12-myristate 13-acetate (PMA) for 15 min, samples were homogenized, immunoprecipitated with anti-NR2A or NR2B antibodies and the resulting pellets subjected to Western blotting with antiphosphotyrosine antibody. An increase in tyrosine phosphorylation of both NR2A (76 +/- 11% above control) and NR2B (41 +/- 11%) was observed. This increase was blocked by pretreatment with the selective PKC inhibitor chelerythrine, with the tyrosine kinase inhibitor Lavendustin A or with the Src family tyrosine kinase inhibitor PP2. PMA treatment also produced an increase in the phosphorylation of serine 890 on the NR1 subunit, a known PKC site, at 5 min with phosphorylation returning to near basal levels by 10 min while tyrosine phosphorylation of NR2A and NR2B was sustained for up to 15 min. These results suggest that the modulation of NMDA receptor function seen with PKC activation may be the result of tyrosine phosphorylation of NR2A and/or NR2B.  相似文献   

15.
The N-methyl-d-aspartate (NMDA) receptor subunits NR2 possess extended intracellular C-terminal domains by which they can directly interact with a large number of postsynaptic density (PSD) proteins involved in synaptic clustering and signaling. We have previously shown that PSD-associated alpha-calmodulin kinase II (alphaCaMKII) binds with high affinity to the C-terminal domain of the NR2A subunit. Here, we show that residues 1412-1419 of the cytosolic tail of NR2A are critical for alphaCaMKII binding, and we identify, by site directed mutagenesis, PKC-dependent phosphorylation of NR2A(Ser(1416)) as a key mechanism in inhibiting alphaCaMKII-binding and promoting dissociation of alphaCaMKII.NR2A complex. In addition, we show that stimulation of PKC activity in hippocampal slices either with phorbol esters or with the mGluRs specific agonist trans-1-amino-1,3- cyclopentanedicarboxylic acid (t-ACPD) decreases alphaCaMKII binding to NMDA receptor complex. Thus, our data provide clues on understanding the molecular basis of a direct cross-talk between alphaCaMKII and PKC pathways in the postsynaptic compartment.  相似文献   

16.
Abstract: N -Methyl- d -aspartate (NMDA) receptors mediate increases in intracellular calcium that can be modulated by protein kinase C (PKC). As PKC modulation of NMDA receptors in neurons is complex, we studied the effects of PKC activation on recombinant NMDA receptor-mediated calcium rises in a nonneuronal mammalian cell line, human embryonic kidney 293 (HEK-293). Phorbol 12-myristate 13-acetate (PMA) pretreatment of HEK-293 cells enhanced or suppressed NMDA receptor-mediated calcium rises based on the NMDA receptor subunit composition. NR2A or NR2B, in combination with NR1011, conveyed enhancement whereas NR2C and NR2D conveyed suppression. The PKC inhibitor bisindolylmaleimide blocked each of these effects. The region on NR2A that conveyed enhancement localized to a discrete segment of the C terminus distal to the portion of NR2C that is homologous to NR2A. Calcium-45 accumulation, but not intracellular calcium store depletion, matched PMA effects on NMDA receptor-mediated calcium changes, suggesting that these effects were not due to effects on intracellular calcium stores. The suppression of intracellular calcium transients seen with NR2C was eliminated when combined with NR1 splice variants lacking C-terminal cassette 1. Thus, the intracellular calcium effects of PMA were distinguishable based on both the NR1 splice variant and the NR2 subunit type that were expressed. Such differential effects resemble the diversity of PKC effects on NMDA receptors in neurons.  相似文献   

17.
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.  相似文献   

18.
Proliferation of vascular smooth muscle cells (VSMC) contributes to the pathogenesis of atherosclerosis, and glycated serum albumin (GSA, Amadori adduct of albumin) might be a mitogen for VSMC proliferation, which may further be associated with diabetic vascular complications. In this study, we investigated the involvement of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and protein kinase C (PKC), in GSA-stimulated mitogenesis, as well as the functional relationship between these factors. VSMC stimulation with GSA resulted in a marked activation of ERK. The MAPK kinase (MEK) inhibitor, PD98059, blocked GSA-stimulated MAPK activation and resulted in an inhibition of GSA-stimulated VSMC proliferation. GSA also increased PKC activity in VSMC in a dose-dependent manner. The inhibition of PKC by the PKC inhibitors, GF109203X and Rottlerin (PKCdelta specific inhibitor), as well as PKC downregulation by phorbol 12-myristate 13-acetate (PMA), inhibited GSA-induced cell proliferation and blocked ERK activation. This indicates that phorbol ester-sensitive PKC isoforms including PKCdelta are involved in MAPK activation. Thus, we show that the MAPK cascade is required for GSA-induced proliferation, and that phorbol ester-sensitive PKC isoforms contribute to cell activation and proliferation in GSA-stimulated VSMC.  相似文献   

19.
The heterogeneity of the protein kinase C (PKC) gene family strongly suggests that different isoforms may have distinct functions in mediating signal transduction. However, there is very little direct evidence for this. PKC has been implicated in arachidonate (AA) release in many cell types. We sought to investigate whether bradykinin- and phorbol ester-stimulated AA release in Madin-Darby canine kidney (MDCK) cells was correlated with differential activation of PKC isoforms. Using phorbol esters to (i) activate the enzyme and (ii) to down-regulate it, we report that differential activation (translocation) of PKC alpha is associated with AA release in MDCK cells and that specific down-regulation of PKC alpha is associated with a loss of AA release in response to stimulation with dioctanoylglycerol and phorbol ester. We also demonstrate that bradykinin-stimulated AA release was associated with differential activation of PKC alpha and was inhibited in PKC alpha down-regulated cells. Thus, we conclude that the PKC alpha isoform is likely to be responsible for mediating AA release in these cells.  相似文献   

20.
The shape changes and membrane ruffling that accompany neutrophil activation are dependent on the assembly and reorganization of the actin cytoskeleton, the molecular basis of which remains to be clarified. A role of protein kinase C (PKC) has been postulated because neutrophil activation, with the attendant shape and membrane ruffling changes, can be initiated by phorbol esters, known activators of PKC. It has become apparent, however, that multiple isoforms of PKC with differing substrate specificities exist. To reassess the role of PKC in cytoskeletal reorganization, we compared the effects of diacylglycerol analogs and of PKC antagonists on kinase activity and on actin assembly in human neutrophils. Ruffling of the plasma membrane was assessed by scanning EM, and spatial redistribution of filamentous (F)-actin was assessed by scanning confocal microscopy. Staining with NBD-phallacidin and incorporation of actin into the Triton X-100-insoluble ("cytoskeletal") fraction were used to quantify the formation of (F)-actin. [32P]ATP was used to detect protein phosphorylation in electroporated cells. Exposure of neutrophils to 4 beta-PMA (an activator of PKC) induced protein phosphorylation, membrane ruffling, and assembly and reorganization of the actin cytoskeleton, whereas the 4a-isomer, which is inactive towards PKC, failed to produce any of these changes. Moreover, 1,2-dioctanoylglycerol, mezerein, and 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol, which are nonphorbol activators of PKC, also promoted actin assembly. Although these effects were consistent with a role of PKC, the following observations suggested that stimulation of conventional isoforms of the kinase were not directly responsible for actin assembly: (a) Okadaic acid, an inhibitor of phosphatases 1 and 2A, potentiated PMA-induced protein phosphorylation, but not actin assembly; and (b) PMA-induced actin assembly and membrane ruffling were not prevented by the conventional PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, staurosporine, calphostin C, or sphingosine at concentrations that precluded PMA-induced protein phosphorylation and superoxide production. On the other hand, PMA-induced actin assembly was inhibited by long-chain fatty acid coenzyme A esters, known inhibitors of nuclear PKC (nPKC). We conclude that PMA-induced actin assembly is unlikely to be mediated by the conventional isoforms of PKC, but may be mediated by novel isoforms of the kinase such as nPKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号