共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains 下载免费PDF全文
Phospholipases C (PLCs) reversibly associate with membranes to hydrolyze phosphatidylinositol-4, 5-bisphosphate (PI[4,5]P(2)) and comprise four main classes: beta, gamma, delta, and epsilon. Most eukaryotic PLCs contain a single, N-terminal pleckstrin homology (PH) domain, which is thought to play an important role in membrane targeting. The structure of a single PLC PH domain, that from PLCdelta1, has been determined; this PH domain binds PI(4,5)P(2) with high affinity and stereospecificity and has served as a paradigm for PH domain functionality. However, experimental studies demonstrate that PH domains from different PLC classes exhibit diverse modes of membrane interaction, reflecting the dissimilarity in their amino acid sequences. To elucidate the structural basis for their differential membrane-binding specificities, we modeled the three-dimensional structures of all mammalian PLC PH domains by using bioinformatic tools and calculated their biophysical properties by using continuum electrostatic approaches. Our computational analysis accounts for a large body of experimental data, provides predictions for those PH domains with unknown functions, and indicates functional roles for regions other than the canonical lipid-binding site identified in the PLCdelta1-PH structure. In particular, our calculations predict that (1). members from each of the four PLC classes exhibit strikingly different electrostatic profiles than those ordinarily observed for PH domains in general, (2). nonspecific electrostatic interactions contribute to the membrane localization of PLCdelta-, PLCgamma-, and PLCbeta-PH domains, and (3). phosphorylation regulates the interaction of PLCbeta-PH with its effectors through electrostatic repulsion. Our molecular models for PH domains from all of the PLC classes clearly demonstrate how a common structural fold can serve as a scaffold for a wide range of surface features and biophysical properties that support distinctive functional roles. 相似文献
2.
Kim A. Sharp 《Proteins》1998,33(1):39-48
The change in free energy of binding of hen egg white lysozyme (HEL) to the antibody HyHel-10 arising from ten point mutations in HEL (D101K, D101G, K96M, K97D, K97G, K97G, R21E, R21K, W62Y, and W63Y) was calculated using a combination of the finite difference Poisson-Boltzmann method for the electrostatic contribution, a solvent accessible surface area term for the non-polar contribution, and rotamer counting for the sidechain entropy contribution. Comparison of experimental and calculated results indicate that because of pKa shifts in some of the mutated residues, primarily those involving Aspartate or Glutamate, proton uptake or release occurs in binding. When this effect was incorporated into the binding free energy calculations, the agreement with experiment improved significantly, and resulted in a mean error of about 1.9 kcal/mole. Thus these calculations predict that there should be a significant pH dependence to the change in binding caused by these mutations. The other major contributions to binding energy changes comes from solvation and charge charge interactions, which tend to oppose each other. Smaller contributions come from nonpolar interactions and sidechain entropy changes. The structures of the HyHel-10-HEL complexes with mutant HEL were obtained by modeling, and the effect of the modeled structure on the calculations was also examined. “Knowledge based” modeling and automatic generation of models using molecular mechanics produced comparable results. Proteins 33:39–48, 1998. © 1998 Wiley-Liss, Inc. 相似文献
3.
Ju He Mohsin Vora Rachel M. Haney Grigory S. Filonov Catherine A. Musselman Christopher G. Burd Andrei G. Kutateladze Vladislav V. Verkhusha Robert V. Stahelin Tatiana G. Kutateladze 《Proteins》2009,76(4):852-860
The FYVE domain associates with phosphatidylinositol 3‐phosphate [PtdIns(3)P] in membranes of early endosomes and penetrates bilayers. Here, we detail principles of membrane anchoring and show that the FYVE domain insertion into PtdIns(3)P‐enriched membranes and membrane‐mimetics is substantially increased in acidic conditions. The EEA1 FYVE domain binds to POPC/POPE/PtdIns(3)P vesicles with a Kd of 49 nM at pH 6.0, however associates ~24 fold weaker at pH 8.0. The decrease in the affinity is primarily due to much faster dissociation of the protein from the bilayers in basic media. Lowering the pH enhances the interaction of the Hrs, RUFY1, Vps27p and WDFY1 FYVE domains with PtdIns(3)P‐containing membranes in vitro and in vivo, indicating that pH‐dependency is a general function of the FYVE finger family. The PtdIns(3)P binding and membrane insertion of the FYVE domain is modulated by the two adjacent His residues of the R(R/K)HHCRXCG signature motif. Mutation of either His residue abolishes the pH‐sensitivity. Both protonation of the His residues and nonspecific electrostatic contacts stabilize the FYVE domain in the lipid‐bound form, promoting its penetration and increasing the membrane residence time. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
Mertens HD Callaghan JM Swarbrick JD McConville MJ Gooley PR 《Protein science : a publication of the Protein Society》2007,16(11):2552-2559
FYVE domain proteins play key roles in regulating membrane traffic in eukaryotic cells. The FYVE domain displays a remarkable specificity for the head group of the target lipid, phosphatidylinositol 3-phosphate (PtdIns[3]P). We have identified five putative FYVE domain proteins in the genome of the protozoan parasite Leishmania major, three of which are predicted to contain a functional PtdIns(3)P-binding site. The FYVE domain of one of these proteins, LmFYVE-1, bound PtdIns(3)P in liposome-binding assays and targeted GFP to acidified late endosomes/lysosomes in mammalian cells. The high-resolution solution structure of its N-terminal FYVE domain (LmFYVE-1[1-79]) was solved by nuclear magnetic resonance. Functionally significant clusters of residues of the LmFYVE-1 domain involved in PtdIns(3)P binding and dependence on low pH for tight binding were identified. This structure is the first trypanosomatid membrane trafficking protein to be determined and has been refined to high precision and accuracy using residual dipolar couplings. 相似文献
5.
The positional preferences of the twenty amino-acid residues in a phospholipid bilayer are investigated by calculating the solvation free energy of the corresponding side chain analogues using a five-slab continuum electrostatic model. The side-chain analogues of the aromatic residues tryptophan and tyrosine are found to partition in the head-group region, due to compensation between the increase of the non-polar component of the solvation free energy at the boundary with the aqueous region and the decrease in the electrostatic component. The side chain analogue of phenylalanine differs from the other aromatic molecules by being able to partition in both the head-group region and the membrane core. This finding is consistent with experimental findings of the position of phenylalanine in membrane helices. Interestingly, the charged side-chain analogues of arginine and lysine are shown to prefer the head-group region in an orientation that allows the charged moiety to interact with the aqueous layer. The orientation adopted is similar to the “snorkelling” effect seen in lysine and arginine residues in membrane helices. In contrast, the preference of the charged side-chain analogues of histidine (protonated) and aspartate (deprotonated) for the aqueous layer is shown to be due to a steep decrease in the electrostatic component of the solvation free energy at the boundary to the aqueous region. The calculations allow an understanding of the origins of side chain positioning in membranes and are thus useful in understanding membrane-protein:lipid thermodynamics. 相似文献
6.
Lipid compositions vary greatly among organelles, and specific sorting mechanisms are required to establish and maintain these distinct compositions. In this review, we discuss how the biophysical properties of the membrane bilayer and the chemistry of individual lipid molecules play a role in the intracellular trafficking of the lipids themselves, as well as influencing the trafficking of transmembrane proteins. The large diversity of lipid head groups and acyl chains lead to a variety of weak interactions, such as ionic and hydrogen bonding at the lipid/water interfacial region, hydrophobic interactions, and van-der-Waals interactions based on packing density. In simple model bilayers, these weak interactions can lead to large-scale phase separations, but in more complex mixtures, which mimic cell membranes, such phase separations are not observed. Nevertheless, there is growing evidence that domains (i.e., localized regions with non-random lipid compositions) exist in biological membranes, and it is likely that the formation of these domains are based on interactions similar to those that lead to phase separations in model systems. Sorting of lipids appears to be based in part on the inclusion or exclusion of certain types of lipids in vesicles or tubules as they bud from membrane organelles. 相似文献
7.
Kutateladze TG 《Progress in lipid research》2007,46(6):315-327
Phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid produced by PI 3-kinases in early endosomes and multivesicular bodies, often serves as a marker of endosomal membranes. PtdIns(3)P recruits and activates effector proteins containing the FYVE or PX domain and therefore regulates a variety of biological processes including endo- and exocytosis, membrane trafficking, protein sorting, signal transduction and cytoskeletal rearrangement. Structures and PtdIns(3)P binding modes of several FYVE and PX domains have recently been characterized, unveiling the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and current mechanisms of the multivalent membrane anchoring by the FYVE and PX domains are reviewed and compared. 相似文献
8.
9.
While ion pairs are readily identified in crystal structures, longer range electrostatic interactions cannot be identified from the three-dimensional structure alone. These interactions are likely to be important in large, multisubunit proteins that are regulated by allosteric interactions. In this paper, we show that these interactions are readily detected by electrostatic modeling, using, as an example, unliganded Escherichia coli aspartate transcarbamylase, a widely studied allosteric enzyme with 12 subunits and a molecular weight of 310 kD. The Born, dipolar, and site-site interaction terms of the free energy of protonation of the 810 titratable sites in the holoenzyme were calculated using the multigrid solution of the nonlinear Poisson-Boltzmann equation. Calculated titration curves are in good agreement with experimental titration curves, and the structural asymmetry observed in the crystal structure is readily apparent in the calculated free energies and pK1/2 values. Most of the residues with pK1/2 values that differ substantially from those of model compounds are buried in the low dielectric medium of the protein, particularly at the intersubunit interfaces. The dependence of the site-site interaction free energies on distance is complex, with a steep dependence at distances less than 5 Å and a more shallow dependence at longer distances. Interactions over distances of 6 to 15 Å require a bridging residue and are often not apparent in the structure. The network of interactions between ionizable groups extends across and between subunits and provides a potential mechanism for transmitting long-range structural effects and allosteric signals. © 1996 Wiley-Liss, Inc. 相似文献
10.
11.
Marta Zuvic-Butorac Peter Müller Thomas Pomorski Jeanette Libera A. Herrmann Milan Schara 《European biophysics journal : EBJ》1999,28(4):302-311
The existence of different lipid domains in the monolayers of the human erythrocyte membrane was investigated at 4 °C by
employing spin-labelled phospholipid analogues. Spectra of analogues located exclusively either in the exoplasmic or in the
cytoplasmic leaflet of erythrocyte membranes were recorded. Spectra were simulated by variation of order parameter describing
the average amplitude of motion of the long molecular axis of the nitrogen 2pπ orbital of the spin label and of the respective correlation times. For both leaflets at least three components were required
to fit the experimental spectra, differing mainly in the order parameter. While the parameters of each component are not very
different between both membrane halves, the relative contribution of each component to the spectrum is different between the
exoplasmic and cytoplasmic leaflet. The order parameter of the most fluid component, presumably resembling the lipid bulk
phase, is smaller in the cytoplasmic leaflet in comparison to the exoplasmic one. The lateral coexistence of different lipid
domains in the human red blood cell membrane is concluded. The molecular nature of those domains is discussed.
Received: 6 November 1998 / Revised version: 25 January 1999 / Accepted: 29 January 1999 相似文献
12.
It is known that the pH dependence of conductance for the rat potassium channel Kv1.4 is susbstantially reduced upon mutation of either H508 or K532. These residues lie in the extracellular mouth of the channel pore. We have used continuum electrostatics to investigate their interactions with K(+) sites in the pore. The predicted scale of interactions between H508/K532 and potassium sites is sufficient to significantly alter potassium occupancy and thus channel function. We interpret the effect of K532 mutation as indicating that the pH-dependent effect requires not only an ionisable group with a suitable pK(a) value (i.e. histidine), but also that other charged groups set the potential profile at a threshold level. This hypothesis is examined in the context of pH dependence for other members of the Kv1 family, and may represent a general tool with which to study potassium channels. 相似文献
13.
Bourova L Kostrnova A Hejnova L Moravcova Z Moon HE Novotny J Milligan G Svoboda P 《Journal of neurochemistry》2003,85(1):34-49
Low-density membrane fragments (domains) were separated from the bulk of plasma membranes of human embryonic kidney (HEK)293 cells expressing a delta-opioid (DOP) receptor-Gi1alpha fusion protein by drastic homogenization and flotation on equilibrium sucrose density gradients. The functional activity of trimeric G proteins and capacity of the DOP receptor to stimulate both the fusion protein-linked Gi1alpha and endogenous pertussis-toxin sensitive G proteins was measured as d-Ala2, d-Leu5-enkephalin stimulated high-affinity GTPase or guanosine-5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding. The maximum d-Ala2-d-Leu5 enkephalin (DADLE)-stimulated GTPase was two times higher in low-density membrane fragments than in bulk of plasma membranes; 58 and 27 pmol/mg/min, respectively. The same difference was obtained for [35S]GTPgammaS binding. Contrarily, the low-density domains contained no more than half the DOP receptor binding sites (Bmax = 6.6 pmol/mg versus 13.6 pmol/mg). Thus, when corrected for expression levels of the receptor, low-density domains exhibited four times higher agonist-stimulated GTPase and [35S]GTPgammaS binding than the bulk plasma membranes. The regulator of G protein signaling RGS1, enhanced further the G protein functional activity but did not remove the difference between domain-bound and plasma membrane pools of G protein. The potency of the agonist in functional studies and the affinity of specific [3H]DADLE binding to the receptor were, however, the same in both types of membranes - EC50 = 4.5 +/- 0.1 x 10(-8) and 3.2 +/- 1.4 x 10(-8) m for GTPase; Kd = 1.2 +/- 0.1 and 1.3 +/- 0.1 nm for [3H]DADLE radioligand binding assay. Similar results were obtained when sodium bicarbonate was used for alkaline isolation of membrane domains. By contrast, detergent-insensitive membrane domains isolated following treatment of cells with Triton X100 exhibited no DADLE-stimulated GTPase or GTPgammaS binding. Functional coupling between the DOP receptor and cognate G proteins was also blocked by high-energy ultrasound and repeated freezing-thawing. Our data indicate, for the first time, that membrane domains isolated using 'detergent-free' procedures exhibit higher efficiency of coupling between a G protein-coupled receptor and its corresponding G protein(s) than bulk plasma membranes. Detergent-extraction diminishes these interactions, even when the receptor and G proteins are physically tethered together. 相似文献
14.
Mayor LR Fleming KP Müller A Balding DJ Sternberg MJ 《Journal of molecular biology》2004,340(5):991-1004
We present a systematic study of the clustering of genes within the human genome based on homology inferred from both sequence and structural similarity. The 3D-Genomics automated proteome annotation pipeline () was utilised to infer homology for each protein domain in the genome, for the 26 superfamilies most highly represented in the Structural Classification Of Proteins (SCOP) database. This approach enabled us to identify homologues that could not be detected by sequence-based methods alone. For each superfamily, we investigated the distribution, both within and among chromosomes, of genes encoding at least one domain within the superfamily. The results indicate a diversity of clustering behaviours: some superfamilies showed no evidence of any clustering, and others displayed significant clustering either within or among chromosomes, or both. Removal of tandem repeats reduced the levels of clustering observed, but some superfamilies still displayed highly significant clustering. Thus, our study suggests that either the process of gene duplication, or the evolution of the resulting clusters, differs between structural superfamilies. 相似文献
15.
Emmanuel Fajardo-Sánchez Vicente Galiano 《Journal of biomolecular structure & dynamics》2017,35(6):1283-1294
Dengue virus C protein, essential in the dengue virus life cycle, possesses a segment, peptide PepC, known to bind membranes composed of negatively charged phospholipids. To characterize its interaction with the membrane, we have used the molecular dynamics HMMM membrane model system. This approach is capable of achieving a stable system and sampling the peptide/lipid interactions which determine the orientation and insertion of the peptide upon membrane binding. We have been able to demonstrate spontaneous binding of PepC to the 1,2-divaleryl-sn-glycero-3-phosphate/1,2-divaleryl-sn-glycero-3-phosphocholine membrane model system, whereas no binding was observed at all for the 1,2-divaleryl-sn-glycero-3-phosphocholine one. PepC, adopting an α-helix profile, did not insert into the membrane but did bind to its surface through a charge anchor formed by its three positively charged residues. PepC, maintaining its three-dimensional structure along the whole simulation, presented a nearly parallel orientation with respect to the membrane when bound to it. The positively charged amino acid residues Arg-2, Lys-6, and Arg-16 are mainly responsible for the peptide binding to the membrane stabilizing the structure of the bound peptide. The segment of dengue virus C protein where PepC resides is a fundamental protein–membrane interface which might control protein/membrane interaction, and its positive amino acids are responsible for membrane binding defining its specific location in the bound state. These data should help in our understanding of the molecular mechanism of DENV life cycle as well as making possible the future development of potent inhibitor molecules, which target dengue virus C protein structures involved in membrane binding. 相似文献
16.
Transmembrane electrostatic membrane potential is a major energy source of the cell. Importantly, it determines the structure as well as function of charge‐carrying membrane proteins. Here, we discuss the relationship between membrane potential and membrane proteins, in particular whether the conformation of these proteins is integrally connected to the membrane potential. Together, these concepts provide a framework for rationalizing the types of conformational changes that have been observed in membrane proteins and for better understanding the electrostatic effects of the membrane potential on both reversible as well as unidirectional dynamic processes of membrane proteins. 相似文献
17.
Katharina Gaus Ben de Wet Andrej Shevchenko Kai Simons Thomas Harder 《The EMBO journal》2009,28(5):466-476
Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T‐cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid‐ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T‐cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses. 相似文献
18.
Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification 总被引:31,自引:0,他引:31
In this paper we report the implementation of a finite-difference algorithm which solves the linearized Poisson-Boltzmann equation for molecules of arbitrary shape and charge distribution and which includes the screening effects of electrolytes. The microcoding of the algorithm on an ST-100 array processor allows us to obtain electrostatic potential maps in and around a protein, including the effects of ionic strength, in about 30 minutes. We have applied the algorithm to a dimer of the protein Cu-Zn superoxide dismutase (SOD) and compared our results to those obtained from uniform dielectric models based on coulombic potentials. We find that both the shape of the protein-solvent boundary and the ionic strength of the solvent have a profound effect on the potentials in the solvent. For the case of SOD, the cluster of positive charge at the bottom of the active site channel produces a strongly enhanced positive potential due to the focusing of field lines in the channel-a result that cannot be obtained with any uniform dielectric model. The remainder of the protein is surrounded by a weak negative potential. The electrostatic potential of the enzyme seems designed to provide a large cross-sectional area for productive collisions. Based on the ionic strength dependence of the size of the positive potential region emanating from the active site and the repulsive negative potential barrier surrounding the protein, we are able to suggest an explanation for the ionic strength dependence of the activity of the native and chemically modified forms of the enzyme. 相似文献
19.
Filopodia formation driven by membrane glycoprotein M6a depends on the interaction of its transmembrane domains 下载免费PDF全文
Karina Formoso Micaela D. García Alberto C. Frasch Camila Scorticati 《Journal of neurochemistry》2015,134(3):499-512
Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress‐regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a‐null mice develop a claustrophobia‐like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single‐nucleotide polymorphisms (SNPs) in the non‐coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self‐interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a‐induced filopodia formation in neurons. In silico analysis of three non‐synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus–Merzbacher disease.
20.
Zilly FE Halemani ND Walrafen D Spitta L Schreiber A Jahn R Lang T 《The EMBO journal》2011,30(7):1209-1220
Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes. 相似文献