首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysosomal degradation of ganglioside GM2 by hexosaminidase A depends on the presence of the specific activator protein which mediates the interaction between micellar or membrane-bound ganglioside and water-soluble hydrolase. The mechanism and the glycolipid specificity of this activator were studied in more detail. 1. It could be shown with three different techniques (isoelectric focusing, centrifugation and electrophoresis) that the activator protein extracts glycolipid monomers from micelles or liposomes to give water-soluble complexes with a stoichiometry of 1 mol of glycolipid/mol of activator protein. Liposome-bound ganglioside GM2 is considerably more stable against extraction and degradation than micellar ganglioside. 2. In the absence of enzyme the activator acts in vitro as glycolipid transfer protein, transporting glycolipids from donor to acceptor membranes. 3. The activator protein is rather specific for ganglioside GM2. Other glycolipids (GM3 GM1, GD1a and GA2) form less stable complexes with the activator and are transferred at a slower rate (except for ganglioside GM1) than ganglioside GM2.  相似文献   

2.
The use of the B subunit of cholera toxin, a protein that binds specifically to ganglioside GM1, has provided a new paradigm for studying physiological functions of ganglioside GM1. The B subunit inhibited the growth of rat glioma C6 cells that had been pretreated with ganglioside GM1. In some preparations of the B subunit, the inhibition was independent of adenylate cyclase activation and was due to the binding of the B subunit to ganglioside GM1 inserted onto the cell surface. However, in other preparations of the B subunit, there was an additional inhibitory effect due to small contaminations with the A subunit, which caused increases in intracellular cyclic adenosine monophosphate (cAMP) levels and concomitant growth inhibition. This vanishingly small contamination with the A subunit could not be detected by conventional protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis but could be measured utilizing a sensitive adenylate cyclase activation assay. Thus caution must be used to ensure that any biological effects of the B subunit are not due to contaminating A subunit and are due solely to the binding of the B subunit to ganglioside GM1 exposed on the cell surface. This is especially important in cyclic nucleotide-sensitive systems.  相似文献   

3.
Kwak DH  Lee S  Kim SJ  Ahn SH  Song JH  Choo YK  Choi BK  Jung KY 《Life sciences》2005,77(20):2540-2551
Abrupt proliferation of glomerular mesangial cells (GMCs) is a common feature in the early stage of diabetic glomerulopathy, and ganglioside GM3 (NeuAcalpha3Galbeta4Glcbeta1Cer) is thought to regulate the proliferation of many cell types. Recently, we have reported ganglioside GM3 as a modulator of glomerular hypertrophy in streptozotocin-induced diabetic rats []. This study examined whether modulation of cellular ganglioside GM3 could regulate the high glucose- and transforming growth factor-beta1 (TGF-beta1)-induced proliferation of GMCs. To pharmacologically modulate the cellular ganglioside GM3, GMCs originated from rat kidneys were cultured with exogenous ganglioside GM3 or d-threo-PDMP, an inhibitor of ganglioside synthesis, in the RPMI 1640 media containing normal (5.6 mM, NG) or high (25 mM, HG) glucose. HG, TGF-beta1 (10 ng/ml) and d-threo-PDMP (20 microM) significantly stimulated the mesangial cell proliferation, whereas these increments were remarkable attenuated by exogenous ganglioside mixture (0.1-0.2 mg/ml) or GM3 (20-100 microM) in a dose-dependent manner. The mesangial cell proliferation caused by HG, TGF-beta1 and d-threo-PDMP was closely correlated with decreases in both cellular sialic acid contents and ganglioside GM3 synthase activity. Based upon the mobility on high-performance thin-layer chromatography (HPTLC), GMCs showed a complex pattern of ganglioside expression that consisted, at least, of five different components of gangliosides, mainly ganglioside GM3. HG, TGF-beta1 and d-threo-PDMP induced a significant reduction of ganglioside expression with apparent changes in the composition of ganglioside GM3, and semi-quantitative analysis by HPTLC showed that ganglioside GM3 expression reduced to about 35-54% of control. These results provide a pathophysiological link between mesangial cell proliferation and ganglioside GM3 expression, indicating that exogenously added ganglioside GM3 inhibits the high-ambient glucose- and TGF-beta1-induced proliferation of cultured GMCs.  相似文献   

4.
The binding and hemagglutinating activities of the B subunit(s) of the heat-labile enterotoxin (LTh-B) isolated from human enterotoxigenic Escherichia coli were investigated. The binding of 125I-labeled LTh-B to neuraminidase-treated human type B erythrocytes was most effectively inhibited by ganglioside GM1. A number of mono-, di- and polysaccharides, as well as several glycoproteins were at least 500 times less potent inhibitors. However, hemagglutination was effectively inhibited by galactose, melibiose and hog A + H but not by ganglioside GM1. Preincubation of the LTh-B with ganglioside GM1 gave much stronger hemagglutination than LTh-B alone. These results suggest that the predominant binding substance for LTh-B on neuraminidase-treated human type B erythrocytes is ganglioside GM1, but indicate that the interaction of LTh-B with ganglioside GM1 is different in hemagglutination.  相似文献   

5.
Urine specimens from two sibs affected with cerebroside sulfatase activator deficiency were examined to ascertain whether the deficiency of the supplementary activator protein required for the enzymatic hydrolysis of cerebroside sulfate was also evident in urine. Material from chromatographic fractionations was examined for the activator activity to avoid ambiguities resulting from protein inhibition. There were substantial deficits in all chromatographic fractions corresponding to activator-containing fractions of control urines. Since patient urines contained elevated amounts of lactosylceramide, digalactosylceramide, and globotriaosylceramide and since similarities between activators for cerebroside sulfate and GM1 ganglioside hydrolyses had been noted previously, the chromatographic fractions were also examined for activators in other glycosphingolipid hydrolase systems. There was coincidence of activators for the GM1 ganglioside/beta-galactosidase and the globotriaosylceramide/alpha-galactosidase A reactions with the cerebroside sulfatase activator in control urine fractions, and the patients' urines were deficient in activator activities for the three reactions. Identity of the three activators was suggested and antiserum to purified GM1 ganglioside activator was used to test this possibility. There were depressed levels of cross-reacting material in fractions of patient urines by Ouchterlony double diffusion and in unfractionated urine by enzyme-linked immunosorbent assay. Purified activators for the cerebroside sulfate and GM1 ganglioside systems showed lines of identity with no spurring on Ouchterlony double diffusion, identical mobility on immunoelectrophoresis, and similar stimulatory activities toward hydrolysis of the three glycosphingolipid species by their respective enzymes. Finally, the three activator activities were retained by anti-GM1-activator IgG coupled to Sepharose 4B. The results suggest strongly that the same protein entity serves as activator for the enzymatic hydrolysis of cerebroside sulfate, GM1 ganglioside, and globotriaosylceramide.  相似文献   

6.
3T3-L1 preadipocytes differentiate in culture into cells having the enzymatic and morphological characteristics of adipocytes. Differentiation is accompanied by a decrease in total cellular ganglioside content; the ganglioside level is 1.8 to 2.5-fold higher in undifferentiated than in differentiated cells. Gangliosides GM3 and GD1a constitute a majority of total cell gangliosides in both cell types, while ganglioside GM1, the putative choleragen receptor, constitutes less than 5%. Differentiation results in a 75 to 85% decrease in ganglioside GM1. An inverse correlation exists between the percentage of adipocytes in the cell population and: 1) total ganglioside and ganglioside GM1 content, and 2) surface ganglioside GM1 as estimated by choleragen binding or fluorescent staining of bound choleragen. Nondifferentiating 3T3-C2 control cells do not exhibit changes in total ganglioside, ganglioside GM1, or choleragen binding that are observed with 3T3-L1 cells.  相似文献   

7.
According to our hypothesis (Fürst, W., and Sandhoff, K. (1992) Biochim. Biophys. Acta 1126, 1-16) glycosphingolipids of the plasma membrane are digested after endocytosis as components of intraendosomal and intralysosomal vesicles and membrane structures. The lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acid exohydrolases requires small, non-enzymatic cofactors, called sphingolipid activator proteins (SAPs). A total of five activator proteins have been identified as follows: namely the saposins SAP-A, -B, -C, and -D, which are derived from the single chain SAP-precursor protein (prosaposin), and the GM2 activator protein. A deficiency of prosaposin results in the storage of ceramide and sphingolipids with short oligosaccharide head groups. The loss of the GM2 activator protein blocks the degradation of the ganglioside GM2. The enzymatic hydrolysis of the ganglioside GM1 is catalyzed by beta-galactosidase, a water-soluble acid exohydrolase. The lack of ganglioside GM1 accumulation in patients suffering from either prosaposin or GM2 activator protein deficiency has led to the hypothesis that SAPs are not needed for the hydrolysis of the ganglioside GM1 in vivo. In this study we demonstrate that an activator protein is required for the enzymatic degradation of membrane-bound ganglioside GM1 and that both SAP-B and the GM2 activator protein significantly enhance the degradation of the ganglioside GM1 by acid beta-galactosidase in a liposomal, detergent-free assay system. These findings offer a possible explanation for the observation that no storage of the ganglioside GM1 has been observed in patients with either isolated prosaposin or isolated GM2 activator deficiency. We also demonstrate that anionic phospholipids such as bis(monoacylglycero)phosphate and phosphatidylinositol, which specifically occur in inner membranes of endosomes and in lysosomes, are essential for the activator-stimulated hydrolysis of the ganglioside GM1. Assays utilizing surface plasmon resonance spectroscopy showed that bis(monoacylglycero)phosphate increases the binding of both beta-galactosidase and activator proteins to substrate-carrying membranes.  相似文献   

8.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid β-protein (Aβ). A marked Aβ assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Aβ assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Aβ assembly in the culture was completely suppressed by the coincubation of Aβ with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Aβ (GAβ). In primary neuronal cultures, Aβ assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Aβ assembly through the generation of GAβ, which is an endogenous seed for Aβ assembly in Alzheimer brain.  相似文献   

9.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.  相似文献   

10.
M Masserini  E Freire 《Biochemistry》1986,25(5):1043-1049
The thermotropic behavior of dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine large unilamellar vesicles containing ganglioside GM1 of homogeneous long chain base composition has been studied by high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. At neutral pH and in the absence of Ca2+, the thermotropic behavior of these systems is independent of the ganglioside chain length composition. The presence of Ca2+ at concentrations higher than 5 mM induces ganglioside phase separation in a manner dependent upon the length difference between the ganglioside long chain base and the phosphatidylcholine acyl chains. The analysis of the chain length dependence of the thermotropic behavior suggests that the driving force for ganglioside phase separation is not a Ca2+-induced cross-bridging of the ganglioside head group but a passive ganglioside exclusion from Ca2+-perturbed phosphatidylcholine-rich regions within the bilayer. Experiments with native ganglioside GM1, primarily a mixture of C18:1 and C20:1 long chain bases, indicate that the individual components of the mixture maintain their characteristic behavior within the lipid bilayer matrix. These results, together with the presence of a phase transition in native GM1 micellar dispersions, absent in purified C18:1 or C20:1 ganglioside micelles, strengthen the idea of a possible role of chain length composition in the modulation of ganglioside function.  相似文献   

11.
The gangliosides of carp intestinal mucosa were isolated and analysed by thin-layer chromatography (TLC), TLC immunostaining test, and TLC/secondary ion mass spectrometry (TLC/SIMS). Four species of gangliosides, designated as G-1, G-2, G-3 and G-4, were separated on TLC. The TLC/SIMS analysis of the G-1 ganglioside of carp intestinal mucosa revealed a series of [M-H](-)ions from m/z 1061 to m/z 1131 representing the molecular mass range of GM4-like ganglioside with NeuAc. G-2, G-3 and G-4 gangliosides were analysed by the TLC immunostaining test. G-2 ganglioside was recognised by the monoclonal antibody specific for ganglioside GM1 (AGM-1 monoclonal antibody). However, G-3 ganglioside migrating on TLC between GM3 and GM1 ganglioside was not recognised by anti-GM3 monoclonal antibody and by AGM-1 monoclonal antibody. Furthermore, G-4 ganglioside with a similar TLC mobility as GD1a ganglioside did not show the reactivity to the anti-GD1a monoclonal antibody. In addition using the AGM-1 monoclonal antibody, the expression of GM1 ganglioside in the carp intestinal tissue was studied. GM1 ganglioside was detected on the epithelial cell surface of carp intestinal mucosa.  相似文献   

12.
A procedure was developed for the cultivation of cells derived from the cerebral hemispheres of the 21-day old rat. Approximately 98 percent of the cells in a 10 day culture are astrocytes that contain glial fibrillary acidic protein. Analysis of the extracted gangliosides by thin layer chromatography revealed that ganglioside GM1 was absent and that the predominant ganglioside was GM3. Very small amounts of the polysialogangliosides GD1a, GD1b, and GT1b were detected. The concentration of gangliosidic NeuNAc per mg protein in these astrocytes was only 3 percent that observed in the 5 day culture of a mixed cell preparation from newborn rat brain. Immunohistochemical and histochemical studies were performed on the mixed cell population of the minced tissue of 21-day old rat brain prior to cultivation. Astrocytes did not stain for hyaluronectin. These cells also did not provide a positive staining reaction for ganglioside GM1 utilizing the antiganglioside GM1 peroxidase-antiperoxidase procedure and the biotinylated choleragen-avidin-peroxidase procedure. These two histochemical methods for ganglioside GM1 also did not stain astrocytes that had been cultured for 5 days. Oligodendroglial cells, which were also present in the uncultured 21-day-old minced brain tissue, stained positively for ganglioside GM1 and hyaluronectin. Hyaluronectin had previously been shown to be a marker for oligodendroglia. Oligodendroglial cells which were present in the 5 day cultures of 21-day old brain tissue also provided a positive reaction for ganglioside GM1. It is concluded that ganglioside GM1 is absent in astroglia. The presence of small amounts of polysialogangliosides in the "pure" astrocyte preparation is discussed.  相似文献   

13.
To study the predominant binding substance for the heat-labile enterotoxin (LTc) isolated from chicken enterotoxigenic Escherichia coli, competitive binding assays were performed with neuraminidase-treated human type B erythrocytes and 125I-labeled B subunit of LTc (LTc-B). Of all inhibitors used, the ganglioside GM1 was the most effective in inhibiting the binding of 125I-labeled LTc-B to the erythrocytes. The other gangliosides used as inhibitors, gangliosides GD1b, GD1a, GM2, GT1b and GM3, were about 24, 166, 250, 440 and at least 440 times less reactive than ganglioside GM1, respectively. With glycoproteins as inhibitors, on the other hand, hog A + H, porcine thyroglobulin and bovine salivary mucin were over 10(4) times less potent. No inhibition was obtained by other mono-, di- and polysaccharides at the highest concentrations used. These findings suggest that the predominant binding substance on neuraminidase-treated human type B erythrocytes for the LTc-B is ganglioside GM1 and that the combining site of LTc-B may be specific for the terminal disaccharide (galactose-N-acetyl-D-galactosamine)-linked portion of ganglioside GM1.  相似文献   

14.
The binding substance for the heat-labile enterotoxin (LTp) isolated from porcine enterotoxigenic Escherichia coli was studied by competitive binding assays. The binding of 125I-labeled LTp to neuraminidase-treated human type A erythrocytes was most effectively inhibited by ganglioside GM1 among inhibitors used. Mono-, di- and polysaccharides, glycoproteins and lectins were over 10(4)-times less potent inhibitors. Similar results were also obtained in competitive binding assays with 3H-labeled ganglioside GM1 and LTp-coupled Sepharose 4B. On the other hand, hemagglutination of neuraminidase-treated human type A erythrocytes by LTp was inhibited by methyl alpha-D-galactopyranoside, galactose, melibiose and some glycoproteins, but not effectively inhibited by ganglioside GM1 at the highest concentration used. Preincubation of LTp with an appropriate amount of ganglioside GM1 resulted in much higher hemagglutination than LTp alone. Although these findings show that there may be fundamental differences between interactions with ganglioside GM1 in hemagglutination compared to interactions with ganglioside GM1 in binding, the predominant binding substance for LTp on neuraminidase-treated human type A erythrocytes is suggested to be ganglioside GM1.  相似文献   

15.
Spectrin, a major component of the membrane skeletal meshwork of metazoan cells, is implicated to associate with membrane domains and is known to act as a scaffold for stabilization and activation of different signalling modules. We have studied the effect of GM1 (monosialotetrahexosyl ganglioside), a well-known model ganglioside and a signalling moiety, on the interaction of non-erythroid brain spectrin with both saturated and unsaturated aminophospholipids by spectroscopic methods. We observe that GM1 modulates brain spectrin-aminophospholipid interaction to the greatest degree whereas its effect on erythroid spectrin is not as pronounced. Fluorescence quenching studies show that brain spectrin interacts with DMPC/DMPE-based vesicles with a 10-fold increased affinity in presence of very low amounts of 2% and 5% GM1, and the extent of quenching decreases progressively in presence of increasing amounts of GM1. Interaction of brain spectrin with unsaturated membrane systems of DOPC/DOPE weakens in presence GM1. Increase in the mean lifetime of the Trp residues of brain spectrin in presence of GM1 indicates change in the microenvironment of spectrin, without affecting the secondary structure of the protein significantly. Studies on pressure – area isotherm of Langmuir-Blodgett monolayer and Brewster's angle microscopy show that GM1 has an expanding effect on the aminophospholipid monolayers, and ordered regions in DMPC/DMPE mixed monolayers are formed and are stabilized at higher pressure. GM1-induced fluidization of the phospholipid membranes and probable physical contact between bulky sugar head group of GM1 and spectrin, may explain the modulatory role of GM1 on aminophospholipid interactions with nonerythroid brain spectrin.  相似文献   

16.
《FEBS letters》1994,350(2-3):219-222
The exposure of GM1 molecular species present in the native ganglioside, carrying C18:1 or C20:1 long-chain bases (LCB), to Dactylium dendroides galactose oxidase was studied. When native GM1 (49.3% C18:1 and 50.7% C20:1 LCB, respectively), was inserted in dipalmitoylphosphatidylcholine vesicles and partially oxidized (10%), the proportion of C18:1 and C20:1 species in the oxidized GM1 was 59.6% and 40.4%, respectively, suggesting a preferential action of the enzyme on the shorter species. The Vmax of the enzyme was higher on C18:1 GM1 than on C20:1 GM1. The molecular species were affected without any preference after partial (10%) oxidation of GM1 incorporated in egg phosphatidylcholine vesicles or in micellar form. These data indicate that the exposure of the terminal galactose moiety of GM1 ganglioside to galactose oxidase is affected by the ganglioside ceramide composition as well as the phospholipid environment, that presumably determine the distribution (molecular dispersion, segregation) of the ganglioside within the membrane.  相似文献   

17.
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.  相似文献   

18.
The enzymatic basis for ganglioside regulation during differentiation of NG108-15 mouse neuroblastoma x rat glioma hybrid cells was studied. This cell line contains four gangliosides that lie along the same biosynthetic pathway: GM3, GM2, GM1, and GD1a. Chemically induced neuronal differentiation of NG108-15 cells led to an 80% drop in the steady-state level of their major ganglioside, GM3, a sixfold increase in the level of a minor ganglioside, GM2 (which became the predominant ganglioside of differentiated cells); and relatively little change in the levels of GM1 and GD1a, which lie further along the same biosynthetic pathway. The enzymatic basis for this selective change in ganglioside expression was investigated by measuring the activity of two glycosyltransferases involved in ganglioside biosynthesis. UDP-N-acetylgalactosamine: GM3 N-acetylgalactosaminyltransferase (GM2-synthetase) activity increased fivefold during butyrate-induced differentiation, whereas UDP-galactose: GM2 galactosyltransferase (GM1-synthetase) activity decreased to 10% of its control level. Coordinate regulation of these two glycosyltransferases appears to be primarily responsible for the selective increase of GM2 expression during NG108-15 differentiation.  相似文献   

19.
The B subunit of cholera toxin, which is multivalent and binds specifically to GM1 ganglioside on the cell surface, has previously been used as a ganglioside-specific probe to regulate DNA synthesis in thymocytes and fibroblasts. To explore in more detail this growth-regulatory action of gangliosides, C6 glioma cells (which are GM1 ganglioside deficient) were used as a model system. When cultures of C6 cells were first treated with GM1, followed by exposure to the B subunit, proliferation was inhibited, as measured by 3H-labeled thymidine incorporation into DNA. Pretreatment of the cells with 50 microM GM1 for 15 min (followed by washing with fetal calf serum) and incubation with 1 microgram/ml of B subunit for 21 h was sufficient to reduce DNA synthesis to 15% of control values (and confirmed by autoradiographic analysis), although maximal inhibition could be achieved with as little as 30 min exposure to B, followed by washing. Furthermore, the B subunit inhibited the response of the C6 cells to basic fibroblast growth factor only following GM1 pretreatment. The B subunit-induced inhibition of DNA synthesis was specific for the ganglioside GM1, and was unrelated to increases of cyclic AMP. These results demonstrate that cell-incorporated GM1 ganglioside may act as a receptor capable of undergoing a specific ligand interaction, subsequently affecting molecular processes at the nuclear level.  相似文献   

20.
In addition to ganglioside GM1b, an unusual and extremely minor ganglioside, GD1 alpha, was efficiently isolated from bovine brain by combination of Q-Sepharose and Iatrobeads column chromatographies. In the course of purification steps, the presence of the sialidase-labile ganglioside was proved by a highly sensitive TLC/enzyme-immunostaining method. The structure was characterized by gas-liquid chromatography, permethylation study, sialidase degradation, immunostaining with specific antibodies, fast atom bombardment-mass spectrometry, and proton magnetic resonance spectrometry. The content of the ganglioside was very small (0.016%) in the total gangliosides. This finding suggests that a synthetic pathway of asialo GM1----GM1b----GD1 alpha may exist in mammalian brains. A monoclonal antibody NA-6 that was obtained by immunizing mice with purified GM1b reacted specifically with GM1b but showed no cross-reactivity with other structurally related gangliosides such as GM1a, GD1a, and so on. Using the method of TLC/immunostaining with NA-6, GM1b was found to be strongly expressed during embryonic days 14-17 in chick brains. Thus, it is assumed that extremely minor gangliosides like GM1b and GD1 alpha found in adult brains are characterized as embryonic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号