首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenicities of various carcinogens induced by liver microsomes are increased in the presence of liver cytosol in rodents. It still remains, however, to be clarified which factor or factors in the cytosol enhance(s) the microsome-mediated mutagenicities. In the present study, we sought to identify the enhancing factor in liver cytosol prepared from rats using the microsome-mediated Salmonella mutagenicity induced by 2-amino-6-methyldipyrido [1,2-a:3',2'-d] imidazole (Glu-P-1). By a series of chromatographic steps, we purified a 16-kDa protein on SDS-PAGE from the cytosol of rat livers. Partial amino acid sequences of this protein revealed that the 16-kDa protein was copper, zinc-superoxide dismutase (CuZn-SOD). The purified CuZn-SOD enhanced the microsome-mediated mutagenicities of several heterocyclic amines and aromatic amines. Furthermore, bovine and human CuZn-SOD also enhanced the microsome-mediated mutagenicity of Glu-P-1. The CuZn-SOD caused an increase in the mutagenicity of N-hydroxylated Glu-P-1 formed from Glu-P-1 by the microsomes, although CuZn-SOD did not affect either the formation or the stability of the N-hydroxylated derivative. These findings suggest that the enhancing cytosol factor for the mutagenicity of Glu-P-1 is CuZn-SOD, which stimulates the mutagenicity of N-hydroxylated Glu-P-1 without changing its metabolism.  相似文献   

2.
The activation pathway of 2-acetylaminofluorene (AAF) to N-hydroxy-2-amino-fluorene (N-OH-AF), a potent mutagen to Salmonella, by guinea pig liver postmitochondrial supernatant fraction (S-9 fraction) was studied. 2-Aminofluorene (AF), as well as N-hydroxy-2-acetylaminofluorene (N-OH-AAF, Takeishi et al., Mutation Res. in press), was detected as a metabolite of AAF. The mutagenicities of AF and N-OH-AAF comparable to that of AAF were inhibited by antiserum against NADPH-cytochrome c reductase and by paraoxon, respectively. These data indicate that in the mutagenic activation of AAF, N-OH-AF can be produced by both N-hydroxylation of AF and deacetylation of N-OH-AAF. Furthermore, the data on the relative contribution of paraoxon-sensitive activation pathway to mutagenicities of AAF and N-OH-AAF led to a conclusion that deacetylation of AAF followed by N-hydroxylation to produce N-OH-AF is the main pathway for the mutagenic activation of AAF by guinea pig liver S-9 fraction.  相似文献   

3.
The effects of quercetin on the mutagenicity of 2-acetylaminofluorene (AAF) and its 3 active metabolites, N-hydroxy-AAF (N-OH-AAF), aminofluorene (AF) and N-acetoxy-AAF(N-OAc-AAF) were investigated. The mutagenicity assays were carried out with Salmonella typhimurium TA98, and S9, microsomes and cytosol were used as metabolic activation systems. In the presence of S9, quercetin enhanced the mutagenicity of AAF, N-OH-AAF, AF and N-OAc-AAF by 6.9-, 4.3-, 3.6- and 3.9-fold, respectively. Quercetin enhanced the mutagenicity of these substrates with microsomes, whereas it depressed the mutagenicity of these substrates with cytosol. From these results, it seemed probable that quercetin promotes the N-hydroxylation and deacetylation in the microsomes, whereas it inhibits the deacetylation in the cytosol. It was shown that in the metabolism of AAF and its metabolites, quercetin modulates the balance between the mutagenicity activation and inactivation processes, which is catalysed by the enzymes in the microsomes and cytosol, and causes enhancement of the mutagenicity of AAF.  相似文献   

4.
Administration of the phenolic antioxidant 2(3)-t-butyl-4-hydroxyanisole (BHA) to mice resulted in a 2-3-fold increase in the liver microsome catalyzed irreversible binding of aflatoxin B1 (AFB1) to calf thymus DNA and up to a 5-fold increase in the ability to induce mutations in Salmonella typhimurium TA98. Maximum induction of AFB1 binding to DNA occurred after 2 days of BHA administration whereas cytosolic glutathione S-transferase was maximally induced (6-fold) only after 10 days of BHA feeding. The induction of a new cytochrome P-450 species was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and an enhanced sensitivity to inhibition by metyrapone and alpha-naphthoflavone. Addition of control cytosol (containing glutathione S-transferase) + glutathione to control microsomes decreased AFB1 binding to DNA by 26%. However, replacement of control cytosol by BHA cytosol which contained 6 times more glutathione S-transferase only marginally enhanced the inhibition to 38%. These data suggest that BHA may exert its effect in the liver primarily through an alteration of the cytochrome P-450 dependent activation process although an increase in the conjugation of reactive metabolite may play a contributory role.  相似文献   

5.
3-Amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), a mutagenic principle in tryptophan pyrolysates, binds to DNA after metabolic activation by rat liver enzymes. The enzymes for activation of Trp-P-2 were found in both microsomes and the cytosol. The reaction required NADPH and ATP, metabolic and was inhibited by 7,8-benzoflavone. Considerable binding was observed with only microsomes as enzyme source, but further addition of cytosol enhanced the binding, enhancement depending on the amount of cytosol added. Inducers for microsomal mixed-function oxidases induced activating enzyme(s) for Trp-P-2, 3-methylcholanthrene being most effective, followed by polychlorinated biphenyls and then phenobarbital.  相似文献   

6.
A series of experiments was designed to characterize the cytochrome P-450-dependent activation of 7 genotoxic carcinogens in the Salmonella preincubation assay by hepatic postmitochondrial fractions (S9) from the oyster toadfish and the Americal eel and by renal S9 from the toadfish. Significant S9-dependent mutagenicity was observed for benzo[a]pyrene (BAP), 2-aminoanthracene (2AA), aflatoxin B1 (AFB1), 7,12-dimethylbenz[a]anthracene (DMBA) and cyclophosphamide (CP) with hepatic S9 from untreated fish (UI S9) of both species and with renal S9 from untreated toadfish, although renal UI S9 was only marginally effective for activating AFB1. Neither UI S9 from toadfish liver or kidney nor that from eel liver consistently affected the direct mutagenicity of ethylene dibromide (EDB) or substantially activated dimethylnitrosamine (DMN). Pretreatment of toadfish with 3-methylcholanthrene (MC) decreased the mutagenicity of 2AA and increased the mutagenicities of BAP, AFB1 and DMBA, whereas, pretreatment of eels with MC increased the mutagenicities of BAP, 2AA and AFB1. Pretreatment of toadfish with Aroclor 1254 (AC) decreased the mutagenicity of AFB1 and increased the mutagenicity of 2AA, whereas, pretreatment of eels with AC increased the mutagenicities of BAP and DMBA. Pretreatment of toadfish with beta-napthoflavone (BNF) effected changes similar to those by pretreatment with MC except that the mutagenicity of AFB1 was not increased. Coincubation with 10(-4) M alpha-napthoflavone (ANF) decreased the mutagenicity of BAP mediated by toadfish MC and BNF S9 and eel AC S9 and decreased the mutagenicity of AFB1 mediated by toadfish MC and BNF S9 and by eel MC S9. Coincubation with ANF increased the mutagenicity of AFB1 mediated by toadfish and eel AC S9 and increased the mutagenicity of 2AA mediated by eel AC S9. Pretreatment of toadfish with MC, BNF and AC decreased the mutagenicity of 2AA mediated by renal S9 and ANF decreased the mutagenicity of 2AA mediated by renal UI and BNF S9. MC pretreatment of toadfish and eels and BNF pretreatment of toadfish induced BAP monooxygenase activity in hepatic microsomes. ANF (10(-4) M) inhibited the BAP monooxygenase activity of MC microsomes from toadfish and eels and of BNF microsomes from toadfish. The conjugation effectors diethyl maleate and salicylamide alone or combined had little or no effect on the mutagenicities of BAP and 2AA mediated by toadfish and eel UI and MC S9.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Mutagenicities of quinoline and its derivatives.   总被引:11,自引:0,他引:11  
Quinoline, recently reported to be carcinogenic in rats [12], was mutagenic to Salmonella typhimurium tester strains TA100 and TA98 in the presence of the metabolic activation system S-9 mix. 2-Chloroquinoline, a non-carcinogen [12], was non-mutagenic with or without S-9 mix. 8-Hydroxyquinoline, which is t known to be carcinogenic, was mutagenic with S-9 mix to both bacterial strains. The mutagenicities of 17 other quinoline derivatives that are not known to be carcinogenic were tested, and 12 of these compounds were mutagenic.  相似文献   

8.
1. The mode of activation of 2-aminofluorene (AF), 2-acetylaminofluorene (AAF) and N-hydroxy-acetylaminofluorene (OH-AAF) to Salmonella typhimurium TA 98 mutagens was investigated in subcellular fractions from the digestive gland of the mussel Mytilus galloprovincialis and from the liver of carp Cyprinus carpio. 2. In carp liver microsomes the activation of OH-AAF was due to very active deacetylase, in contrast to undetectable deacetylase-dependent activation in mussel microsomes. 3. AF and AAF are activated in mussel microsomes exclusively by a noninducible FAD-containing monooxygenase, whereas in carp microsomes in addition deacetylase and inducible cytochrome P-450 monooxygenase are involved. 4. N,O-Acetyltransferase, sulfotransferase and paraoxon sensitive cytosolic enzyme (PSCE) are involved in activation of OH-AAF, AF and AAF in both carp and mussel cytosols. 5. The metabolic activation of OH-AAF, AF and AAF to bacterial mutagens found in carp liver is similar to that described in livers of experimental mammalian species and strikingly different from the mode of activation found in mussel digestive gland.  相似文献   

9.
The effects of cytosol, NADPH and reduced glutathione (GSH) on the activity of 5'-deiodinase were studied by using washed hepatic microsomes from normal fed rats. Cytosol alone had little stimulatory effect on the activation of microsomal 5'-deiodinase. NADPH had no stimulatory effect on the microsomal 5'-deiodinase unless cytosol was added. 5'-deiodinase activity was greatly enhanced by the simultaneous addition of NADPH and cytosol (P less than 0.001); this was significantly higher than that with either NADPH or cytosol alone (P less than 0.001). GSH was active in stimulating the enzyme activity in the absence of cytosol, but the activity of 5'-deiodinase with 62 microM-NADPH in the presence of cytosol was significantly higher than that with 250 microM-GSH in the presence of the same concentration of cytosol (P less than 0.001). The properties of the cytosolic components essential for the NADPH-dependent activation of microsomal 5'-deiodinase independent of a glutathione/glutathione reductase system were further assessed using Sephadex G-50 column chromatography to yield three cytosolic fractions (A, B and C), wherein A represents pooled fractions near the void volume, B pooled fractions of intermediate Mr (approx. 13 000), and C of low Mr (approx. 300) containing glutathione. In the presence of NADPH (1 mM), the 5'-deiodination rate by hepatic washed microsomes is greatly increased if both A and B are added and is a function of the concentrations of A, B, washed microsomes and NADPH. A is heat-labile, whereas B is heat-stable and non-dialysable. These observations provide the first evidence of an NADPH-dependent cytosolic reductase system not involving glutathione which stimulates microsomal 5'-deiodinase of normal rat liver. The present data are consistent with a deiodination mechanism involving mediation by a reductase (other than glutathione reductase) in fraction A of an NADPH-dependent reduction of a hydrogen acceptor in fraction B, followed by reduction of oxidized microsomal deiodinase by the reduced acceptor (component in fraction B).  相似文献   

10.
The mutagenicity of 2-aminofluorene, 4-aminobiphenyl and 3,2'-dimethylaminobiphenyl towards Salmonella typhimurium was studied in the presence of microsomes from liver, kidney and small intestine of untreated and pretreated rats. The aim was to study a possible correlation between the organotropism of these amines and their activation into mutagenic intermediates by these three tissues. Pretreatment of the rats with phenobarbital, Aroclor 1254 and 3-methylcholanthrene injected intraperitoneally increased the liver microsomal-mediated mutagenic activity of the three amines but remained without effect on the activating capacity of microsomes from the kidney and small intestine. However, pretreatment with 3-methylcholanthrene administered intragastrically increased the small-intestine microsomal-mediated mutagenicity of 2-aminofluorene almost 3-fold but remained without effect on the mutagenicity of 4-aminobiphenyl and 3,2'-dimethylaminobiphenyl. No mutagenic effect was observed with 4-aminobiphenyl in the presence of kidney microsomes or with 4-aminobiphenyl and 3,2'-dimethylaminobiphenyl in the presence of small-intestine microsomes, obtained from either untreated or pretreated animals. It is concluded that no relationship exists between the mutagenic activities of the three amines, as detected in the Ames test, and their carcinogenic organotropisms.  相似文献   

11.
DNA lesions produced in Escherichia coli AB2500 (uvrA) exposed to the carcinogen N-hydroxy-3-methoxy-4-aminoazobenzene (N-OH-3-MeO-AAB) or the noncarcinogen N-hydroxy-2-methoxy-4-aminoazobenzene (N-OH-2-MeO-AAB) were investigated by alkaline sucrose gradient sedimentation and 32P-postlabeling analysis. Alkali-labile sites appeared to be formed equally in cells treated with both aminoazobenzene derivatives. 32P-Postlabeling analysis revealed that the 3-MeO-AAB-DNA adduct level was 25-fold higher than that for 2-MeO-AAB-DNA adducts. In addition to major adducts, 4 minor spots were detected in N-OH-3-MeO-AAB-treated cells, while only one major adduct was found in N-OH-2-MeO-AAB-treated cells. The mutagenicities and cytotoxicities were also determined with E. coli with different repair capacities; we found that repair of 3-MeO-AAB damages is strongly dependent on the UVR repair system. Moreover, N-OH-3-MeO-AAB, but not N-OH-2-MeO-AAB, could induce recA and umuC gene expression, which was higher in uvrA strains than in the wild type.  相似文献   

12.
We studied thein vitro activation of aflatoxin B1 (B1) by microsomes and its inactivation by the cytosol of various quail and hamster organs, using B1-DNA binding as an index. The microsomal activity of the liver to bind B1 to DNA was not largely different between the two species and was higher than that of the other organs examined in either species. The microsomal activity of the kidney and lung was very low in the quail compared with the hamster, indicating the very small contribution of the lung and kidney microsomes to the activation of B1 in birds. Only the hamster liver cytosol showed strong inhibition of microsome-mediated B1-DNA binding.  相似文献   

13.
In order to elucidate the mechanisms of mutagenic activation of nitroarenes, we tested the mutagenic potency of 18 kinds of nitroarenes including nitrated biphenyl, fluorene, phenanthrene and pyrene on Salmonella typhimurium TA98 in the absence and presence of S9 mix. The mutagenicities of 2,4-dinitrobiphenyl derivatives and 4-nitrobiphenyl were enhanced by the addition of S9. 2,4,6-Trinitrobiphenyl (3 net rev./10 micrograms without S9) was activated 60-fold by the mammalian metabolic system (181 net rev./10 micrograms with 10% S9). The mutagenic potency of 2,4,2',4'-tetranitrobiphenyl in TA98, TA98NR and TA98/1,8-DNP6 was also enhanced by the addition of 10% S9. But 1-nitropyrene and 1,3-dinitropyrene, which are well-known mutagens and carcinogens, were deactivated to 3% and 0.4%, respectively, by the addition of 10% S9. Separate addition of microsomal and cytosolic fractions slightly activated the mutagenicity of 2,4,6-trinitrobiphenyl, and 2,4,2',4'-tetranitrobiphenyl was activated not only by S9 but also by the cytosolic fraction.  相似文献   

14.
The ability of human red blood cell cytosol to activate aromatic amines was evaluated with the Ames test using Salmonella typhimurium TA98 in the liquid preincubation condition. While negative results were obtained with 4-acetylaminofluorene (4AAF) and 1-naphtylamine (1NA), a slight response was observed for 4-aminobiphenyl (4ABP) and 2-naphthylamine (2NA). Human red blood cell cytosol was able to activate 2-aminofluorene (2AF), 2-acetylaminofluorene (2AAF) and 2-aminoanthracene (2AA) to mutagenic intermediates. Extracts of human red blood cell cytosol incubated with 2AF were analyzed by gas chromatography: N-hydroxy-2-aminofluorene was identified as a metabolite.  相似文献   

15.
The mutagenicities of 12 conjugated non-fused nitroaromatic compounds and 1 amino analogue were determined in strains TA100 and TA98 of Salmonella typhimurium. Reversions by p-nitroaromatics increased in the order of the acetophenone, benzaldehyde, styrene, chalcone, cinnamic acid and stilbene indicating the importance for mutagenic potency of extended conjugation to the p-nitrophenyl substituent. Highest mutagenicity was found with alpha-substituted 4-nitrostyryl derivatives of which the phenyl derivative (31 revertants per nmole in TA100) was the most active. Generally, the TA100 strain was more sensitive than TA98 to these mutagens and S9 treatment was unnecessary for activity, although 4-nitrochalcone required S9 activation. Para-nitro isomers of the cinnamic acids and chalcones were much more active than the corresponding ortho and meta isomers. The 4-aminocinnamic acid analogue was inactive suggesting that complete reduction in Salmonella of 4-nitrocinnamic acid to an active amino derivative is not response for the high mutagenicity of the former. Mutagenicity of these p-nitrostyryl compounds may be explained by the covalent interaction of the electrophilic benzylic carbon with Salmonella DNA.  相似文献   

16.
Estrogen 1,2-epoxides or estrogen quinones/semiquinones   总被引:1,自引:0,他引:1  
Metabolic activation of estradiol leading to the formation of catechol estrogens is a prerequisite for its genotoxic activity. Both estrogen-o-quinones/semiquinones and estrogen 1,2-epoxides have been proposed to be responsible for this activity. Incubations of [3H]estradiol and [3H]1 alpha,2 alpha-epoxy-4-estrene-3-one-17 beta-ol (ketotautomer of estradiol 1,2-epoxide) with rat liver microsomal and cytosol preparations were carried out in the presence of SKF 525A, ascorbic acid, glutathione and cysteine. Ascorbic acid decreased binding to proteins and aqueous-soluble fraction with both [3H] estradiol and [3H]epoxyestrenolone in incubations with microsomes but no effect with cytosol fraction. Incubations of microsomes with thiols gave water-soluble metabolites which were characterized as 1(4)-thioether derivatives of 2-hydroxyestradiol and incubations of [3H]epoxyestrenolone with cytosol and thiols gave estradiol-2-thioether. Incubations with ascorbic acid and thiols resulted in decreased formation of water-soluble metabolites in microsomal incubations but not in cytosol incubations. These studies indicate that the major pathway for irreversible binding of estrogens to macromolecules involves estrogen-o-quinones/semiquinones and not estrogen 1, 2-epoxide.  相似文献   

17.
M M Iba 《Mutation research》1987,182(5):231-241
The metabolic basis of the differential activation of 4 benzidines--3,3'-dichlorobenzidine (DCB), benzidine (BZ), o-tolidine (TOL) and o-dianisidine (DIN)--to mutagens was examined in the Ames test, using Salmonella typhimurium TA98. For each benzidine congener, the comparative activation by 3 rat liver enzyme systems--(i) postmitochondrial supernatant (S9), (ii) S9 + acetylcoenzyme A (S9-Ac) and (iii) microsomes--and the effect thereon of animal pretreatment with 3 cytochrome P-450 inducers--DCB, 3-methylcholanthrene (MC) and phenobarbital (PB)--were examined. DCB was the most activated of the benzidines, with activation by the 3 systems being in the order: S9 = S9-Ac greater than microsomes, whereas dianisidine and tolidine were the least activated. Benzidine was activated only in the S9 systems but the S9-catalyzed activation of benzidine, unlike that of DCB, was enhanced by added acetylcoenzyme A. Pretreatment with either DCB, MC or PB enhanced the activation of DCB, decreased that of benzidine, and had no effect on that of tolidine or dianisidine. The enhanced DCB activation was most pronounced with DCB pretreatment and was 2.5-fold, 2-fold, and 3-fold, in S9-Ac, S9, and microsomes, respectively. The microsomal-catalyzed DCB activation was inhibited by the cytochrome P-450 inhibitors 2,4-dichloro-6-phenylphenoxyethylamine and alpha-naphthoflavone by 93% and 48%, respectively. DCB, but not its congeners, elicited NADPH-dependent metabolite complex formation with microsomal cytochrome P-450. The results show that DCB is the most mutagenic of the 4 benzidines under conditions of cytochrome-P-450-catalyzed activation and suggest that the DCB activation may be catalyzed most effectively by cytochrome P-450 species induced specifically by the compound itself.  相似文献   

18.
Nitrated pyrenes are mutagenic and tumorigenic environmental pollutants that are activated to DNA-binding derivatives via nitroreduction. We have investigated the enzymatic nitroreduction of 1-nitropyrene, 1,3-, 1,6- and 1,8-dinitropyrene to determine if differences in the extent of nitroreduction may help explain differences in their biological potencies. Each nitrated pyrene was incubated aerobically and anaerobically with 105,000 X g supernatant (S105) from Salmonella typhimurium TA98 and the nitroreductase-deficient strain, TA98NR, and with cytosol and microsomes from rat and human liver. Under anaerobic conditions, 1-nitropyrene and 1,3-dinitropyrene were reduced by TA98 S105 to a lesser extent than 1,6- and 1,8-dinitropyrene. The extent of 1,6- and 1,8-dinitropyrene metabolism was not altered relative to TA98 when using TA98NR S105, but the nitroreduction of 1-nitropyrene and 1,3-dinitropyrene was decreased. Both rat and human liver cytosol and microsomes reduced 1,6- and 1,8-dinitropyrene to greater extents than 1-nitropyrene and 1,3-dinitropyrene. Under aerobic conditions rat and human liver cytosols were similar to TA98 S105 in that aminopyrene decreased while nitrosopyrene formation increased. By comparison, oxygen decreased the microsomal formation of both nitrosopyrenes and aminopyrenes. The reduction of succinoylated cytochrome c was measured during the hepatic metabolism of nitro- and nitrosopyrenes under aerobic conditions. The data indicated that reduced nitro- and nitrosopyrene intermediates were directly reducing succinoylated cytochrome c and that the assay could be used as a measure of aerobic nitroreduction. These studies demonstrate that 1,6- and 1,8-dinitropyrene are reduced to a greater extent than 1-nitropyrene and 1,3-dinitropyrene, which corresponds to their relative biological potencies as mutagens and carcinogens. Furthermore, although more extensive nitroreduction is detected under anaerobic conditions, the nitroreduction that occurs aerobically may be important for the mutagenic and tumorigenic properties of these compounds.  相似文献   

19.
Pentachlorophenol (PCP), a widely used biocide, induces liver tumors in mice but not in rats. Metabolic activation of PCP to chlorinated quinones and semiquinones in liver cytosol from Sprague-Dawley rats and B6C3F1 mice was investigated in vitro (1) with microsomes in the presence of either beta-nicotinamide adenine dinucleotide phosphate (NADPH) or cumene hydroperoxide (CHP), (2) with CHP in the absence of microsomes, and (3) with horseradish peroxidase (HRP) and H2O2. Mono-S- and multi-S-substituted adducts of tetrachloro-1,4-benzoquinone (Cl4-1,4-BQ) and Cl4-1,2-BQ and their corresponding semiquinones [i.e. tetrachloro-1,4-benzosemiquinone (Cl4-1,4-SQ) and tetrachloro-1,2-benzosemiquinone (Cl4-1,2-SQ)] were measured by gas chromatography-mass spectrometry (GC-MS). Qualitatively, the metabolites of PCP were the same in both rats and mice for all activation systems. Induction of PCP metabolism by either 3MC or PB-treated microsomes was observed in NADPH- but not in CHP-supported systems. In rats, the amount of induction was comparable with either 3MC or PB. 3MC was a stronger inducer than PB in mice and also induced a greater amount of metabolism than in rats. This suggests that induction of specific P450 isozymes may play a role in the toxicity of PCP to mice. Both HRP/H2O2 and CHP led to production of the full spectrum of chlorinated quinones and semiquinones, confirming the direct oxidation of PCP. CHP (with or without microsomes) converted PCP into much greater quantities of quinones and semiquinones than did microsomal P450/NADPH or HRP/H2O2 in both species. This implies that, under conditions of oxidative stress, endogenous lipid hydroperoxides may increase PCP metabolism sufficiently to enhance the toxicity and carcinogenicity of PCP.  相似文献   

20.
Phenylhydroxylamine (PHA) and its derivatives such as monomethyl (2-Me, 3-Me, 4-Me) and dimethyl (2,3-diMe, 2,4-diMe, 2,5-diMe, 2,6-diMe, 3,4-diMe, 3,5-diMe) were tested for their mutagenicity and for their inducing ability to inactivate transforming DNA. All these compounds except PHA and 3,5-diMePHA were found to be mutagenic in Salmonella typhimurium TA100 even in the absence of S9 mix, and their mutagenic potency was in the order: 2,6-diMe- greater than 2,4-diMe- = 3,4-diMe- greater than 4-Me- greater than 2,3-diMe- = 2,5-diMe- greater than 2-Me- = 3-MePHA. Besides mutagenicities, all the PHA derivatives except 2,6-diMePHA caused severe reductions in the activity of Bacillus subtilis transforming DNA. To establish the structure-activity relationship, we examined the correlation between these activities and the stabilities of the PHA derivatives, and the results indicated that the more chemically unstable the PHA derivatives were, the more active they were with respect to the mutations and to the inactivation of the transforming DNA. The mutagenic activity of 2,6-diMePHA was the sole exception, because it was most stable, but its induced mutation frequency was highest. From these results, we suggest that all the PHA derivatives, except 2,6-diMePHA, cause DNA damage through the generation of active molecular species, such as nitrenium ions, without any enzymatic activation, while 2,6-diMePHA requires further metabolic activation by bacterial enzymes to stimulate mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号