首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seven different strains were selected for their ability to degrade citrus pectin. Alkaline pectinases were produced by five bacterial soil isolates, whereas two fungal strains produced pectinase in an acidic environment. The bacteria were isolated from soil of a plum orchard in Northern Ireland. These isolates produced significant amounts of pectin lyase (PL) and polygalacturonase (PG) with maximum activities of 30.1 and 29.1 U/ml respectively. Fungal strains Aspergillus sp. and PN-1 produced four different pectinolytic activities; endo-PG, exo-PG, pectin esterase (PE) and PL. The Aspergillus sp. produced higher amounts of pectinase than PN-1. The Aspergillus sp. excreted highly stable pectinases, which may be of importance for industrial applications.  相似文献   

2.
Strains Paenibacillus sp. BP-23 and Bacillus sp. BP-7, previously isolated from soil from a rice field, secreted high levels of pectinase activity in media supplemented with pectin. Production of pectinases in strain Paenibacillus sp. BP-23 showed catabolite repression, while in Bacillus sp. BP-7 production of pectin degrading enzymes was not negatively affected by glucose. The two strains showed lyase activities as the predominant pectinases, while hydrolase activity was very low. Analysis of Paenibacillus sp. BP-23 in SDS–polyacrylamide gels and zymograms showed five pectinase activity bands. The strict requirement of Ca2+ for lyase activity of the strain indicates that correspond to pectate lyases. For Bacillus sp. BP-7, zymograms showed four bands of different size. The strain showed a Ca2+ requirement for lyase activity on pectate but not on pectin, indicating that the pectinolytic system of Bacillus sp. BP-7 is comprised of pectate lyases and pectin lyases. The results show differences in pectin degrading systems between the two aerobic sporogenous bacterial strains studied.  相似文献   

3.
BackgroundColletotrichum truncatum is the most common pathogenic fungus associated with soybean anthracnose, a prevalent disease in Argentina. Pectinolytic enzymes are involved in the pathogenicity of a wide range of plant pathogenic fungi.ObjectivesTo explore pectinolytic enzyme production in Argentinian Colletotrichum strains isolated from diseased soybean plants from different geographic locations, as a preliminary step to establish the biological role of the pectinolytic enzymes in the Colletotrichum spp.–soybean system, yet unknown.MethodsTen strains were screened for in vitro pectinolytic enzyme production on a defined medium based on pectin as carbon source.ResultsAll isolates were able to grow in this medium and polymethylgalacturonase (PMG), polygalacturonase (PG) and pectin lyase (PL) activities were detected. On the whole, the peak of polygalacturonases activities preceded the day of maximum growth, while PL activity reached its highest level afterwards. Strain BAFC 3097 (from Santa Fe province) yielded high titles of the three enzymes (1.08 U/ml PG, 1.05 U/ml PMG, 156 U/ml PL), after a short incubation period (7–10 days). Low synthesis of polygalacturonases in cultures containing glucose as unique carbon source suggests that these enzymes are constitutive in contrast with PL, which was not detected.ConclusionsThe disparity observed in enzyme production among strains cannot be related to fungal growth, since no major differences in mycelial yield were found; it was not connected with their geographic origin, but might be associated with differences in virulence among strains not yet evaluated.  相似文献   

4.
A quantitative analysis of pectolytic enzymes (polygalacturonase (PG), pectin methyl esterase (PME) and six isoenzymes of pectate lyase (PL)) produced byErwinia bacteria in the presence of diverse carbon sources was made by preparative electrophoresis. Synthesis of each of these enzymes was regulated independently; different induction and repression ratios (about 10- to 1000-fold) were observed for diverse PL isoenzymes, PG and PME. The possibility of using specially constructed media for the production of pectinase complexes with a specific spectra of pectolytic enzymes has been demonstrated.  相似文献   

5.
Novel thermophilic and alkaliphilic bacteria for the processing of bast fibres were isolated using hemp pectin as substrate. The strain PB94A, which showed the highest growth rate (μ = 0.5/h) was identified as Geobacillus thermoglucosidasius (DSM 21625). The strain grew optimally at 60°C and pH 8.5. During growth on citrus pectin, the strain produced pectinolytic lyases, which were excreted into the medium. In contrast to the commercially available pectinase Bioprep 3000 L, the enzymes from G. thermoglucosidasius PB94A converted pectin isolated from hemp fibres. In addition to hemp pectin, the culture supernatant also degraded citrus, sugar beet and apple pectin and polygalacturonic acid. When hemp fibres were incubated with the cell-free fermentation broth of G. thermoglucosidasius PB94A, the fineness of the fibres increased. The strain did not produce any cellulases, which is important in order to avoid damaging the fibres during incubation. Therefore, these bacteria or their enzymes can be used to produce fine high-quality hemp fibres.  相似文献   

6.
Five Bacillus strains isolated from decaying vegetable material were cultivated on wheat bran and endo-polygalacturonases, exo-polygalacturonase and pectin lyase activities in the crude enzymatic solution obtained were determined. Highest activity was observed for all enzymes when fermentation was carried out at 28 °C, the highest activity values were obtained after 120 h of cultivation for exo-PG and after 48 h for endo-PG and PL. The use of the enzymatic solution for treatment of fruits and vegetable mash afforded a high juice extraction and a pulp with good pressing characteristics.  相似文献   

7.
The coffee fermentation is characterized by the presence of different microorganisms belonging to the groups of bacteria, fungi and yeast. The objectives of this work were to select pectinolytic microorganisms isolated from coffee fermentations and evaluate their performance on coffee pulp culture medium. The yeasts and bacteria isolates were evaluated for their activity of polygalacturonase (PG), pectin lyase (PL) and pectin methylesterase (PME) and metabolites production. Among 127 yeasts isolates and 189 bacterial isolates, 15 were pre-selected based on their ability to produce PL and organic compounds. These isolates were strains identified as Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Candida parapsilosis, Pichia caribbica, Pichia guilliermondii and Saccharomyces cerevisiae. When cultivated in Coffee peel and pulp media in single culture or two by two mixed inocula, different behavior concerning to PME, PL and PG were found. The two principal components PC1 and PC2 accounted for 45.27 and 32.02 % of the total variance. UFLA CN727 and UFLA CN731 strains were grouped in the positive part of PC1 being characterized by 1,2-propanediol, hexanoic acid, decanoic acid, nonanoic acid and ethyl acetate. The UFLA CN448 and UFLA CN724 strains were grouped in the negative part of PC1 and were mainly characterized by guaiacol, butyric acid and citronellol. S. cerevisiae UFLACN727, P. guilliermondii UFLACN731 and C. parapsilosis UFLACN448 isolates are promising candidates to be tested in future studies as coffee starter cultures.  相似文献   

8.
The pectin lyase (PL) is an industrially important enzyme since it is used for maceration and clarification in the process of fruit juice production in food industries. In order to increase the yields of pectin lyase we cloned the plg1 (pectin lyase 1) from Penicillium griseoroseum gene under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (gpdA) and the terminator region of the tryptophan synthetase (trpC) gene from Aspergillus nidulans (plasmid pAN52-Plg1) and transformed this construct into the P. griseoroseum strain PG63. One of the pAN52-Plg1 multi-copy transformants (strain 105) grown in culture medium containing glucose or sugar cane juice showed PL activities of 4,804 or 5,202 U ml−1 respectively, which represented 57- and 132-fold increases. In addition, the apparent specific activity of PL produced by this strain was much higher than the one observed for a commercial pectinase preparation. Evaluation of the extracellular proteins in the culture supernatant of strain 105 by SDS-PAGE showed the presence of a clear and strong band of approximately 40 kDa that probably corresponds to PL. The enzyme yields reported here demonstrate that the system we developed is able to express pectin lyase at levels comparable to, or exceeding, previously reported data.  相似文献   

9.
Thermophilic organisms produce thermostable enzymes, which have a number of applications, justifying the interest in the isolation of new thermophilic strains and study of their enzymes. Thirty-four thermophilic and thermotolerant fungal strains were isolated from soil, organic compost, and an industrial waste pile based on their ability to grow at 45°C and in a liquid medium containing pectin as the only carbon source. Among these fungi, 50% were identified at the genus level as Thermomyces, Aspergillus, Monascus, Chaetomium, Neosartoria, Scopulariopsis, and Thermomucor. All isolated strains produced pectinase during solid-state fermentation (SSF). The highest polygalacturonase (PG) activity was obtained in the culture medium of thermophilic strain N31 identified as Thermomucor indicae-seudaticae. Under SSF conditions on media containing a mixture of wheat bran and orange bagasse (1 : 1) at 70% of initial moisture, this fungus produced the maximum of 120 U/ml of exo-PG, while in submerged fermentation (SmF) it produced 13.6 U/ml. The crude PG from SmF was more thermostable than that from SSF and exhibited higher stability in acidic pH.  相似文献   

10.
Aims: To obtain recombinant strains of Penicillium griseoroseum that produce high levels of pectin lyase (PL) and polygalacturonase (PG) simultaneously. Methods and Results: A strain with high production of PL was transformed with the plasmid pAN52pgg2, containing the gene encoding PG of P. griseoroseum, under control of the gpd promoter gene from Aspergillus nidulans. Southern blot analysis demonstrated that all strain had at least one copy of pAN52pgg2 integrated into the genome. The recombinant strain P. griseoroseum T20 produced levels of PL and PG that were 266‐ and 27‐fold greater, respectively, than the wild‐type strain. Furthermore, the extracellular protein profile of recombinant T20 showed two protein bands of c. 36 and 38 kDa, associated with PL and PG, respectively. Conclusions: This recombinant strain T20 produces PL and PG using carbon sources of low costs, and an enzyme preparation that is free of cellulolytic and proteolytic activities. Significance and Impact of the Study: PL and PG play an important role in the degradation of pectin. Owing to their use in the juice and wines industries, there is a growing interest in the inexpensive production of these enzymes. This work describes an efficient system of protein expression and secretion using the fungus P. griseoroseum.  相似文献   

11.
A fifth and newAzospirillum species,A. irakense, a nitrogen fixing and pectinolytic bacterium was found associated with roots and rhizosphere of rice in the region of Diwaniya (Qadisya), Iraq. This species produces pectate lyase and pectin methylesterase activities and can fix nitrogen when pectin is the sole carbon source. The four other species ofAzospirillum fail to show a pectinolytic activity.  相似文献   

12.
Summary During the traditional fermentation of cocoa, yeasts with pectinolytic activity are involved in the degradation of the pulp. Saccharomyces chevalieri, Torulopsis candila, and Candida norvegensis, as well as Kluyveromyces fragilis included in this study as a control strain all have a pectinolytic activity (endopolygalacturonase E.C. 3.2.1.15). The enzymes studied have the same optimal pH of activity [5] but are different from each other in their optimal temperature and their thermal stability. The enzymes of Torulopsis candida and Kluyveromyces fragilis have the highest optimal temperature (60° C). Among the strains studied, Candida norvegensis produced the greatest amount of exocellular enzyme.  相似文献   

13.
The growth of the microorganism and the production of the pectinolytic enzyme complex in a stirred 30-l biofermentor using the Aspergillus niger Rehbrücke strain were studied. The time courses of fermentation parameters (formation of biomass, consumption of carbon and inorganic nitrogen source, formation of pectinolytic enzymes) were measured. The formation of biomass showed a distinct lag phase, followed by a log phase with exponential growth and finally a stationary period when cell lysis was beginning. The uptake of the carbon source and inorganic nitrogen source by the A. niger cells corresponded to the time course of growth. The formation of pectinolytic enzymes took place in two steps. The first one was growth-bounded and finished with the end of the log phase of biomass growth. The second step of pectinolytic enzyme formation took place after the end of the catabolite repression of the carbon source and was not growth-bounded. On the basis of the experimental data a mathematical model of the fermentation process was developed. Comparison of the kinetics of the measured fermentation curves and the solution curves of the model showed qualitatively good agreement.  相似文献   

14.
AIMS: The present study was conducted to screen for psychrophilic yeasts that are able to degrade pectin compounds at low temperature, and to examine the cold-active pectinolytic enzymes produced by the isolated psychrophilic yeasts. METHODS AND RESULTS: Psychrophilic yeasts, which grow on pectin as a sole carbon source, pectinolytic-psychrophilic yeast (PPY) strains PPY-3, 4, 5 and 6, were isolated from soil from Abashiri (Hokkaido, Japan). The sequences of 28S rDNA D1/D2 of strains PPY-3 and 4 indicated a taxonomic affiliation to Cryptococcus cylindricus and Mrakia frigida, respectively, strains PPY-5 and 6 belonged to Cystofilobasidium capitatum. The isolated strains were able to grow on pectin at below 5 degrees C, and showed the activities of several cold-active pectinolytic enzymes. CONCLUSION: The findings of this study indicate the possibility that the isolated strains produce novel pectinolytic enzymes that are able to degrade pectin compounds at low temperature. Significance and Impact of the Study: It is possible that the cold-active pectinolytic enzymes from the isolated strains can be applied to the food industry, e.g. the clarification of fruit juice below 5 degrees C.  相似文献   

15.
Pectinolytic enzymes play an important role in cocoa fermentation. In this study, we characterized three extracellular pectate lyases (Pels) produced by bacilli isolated from fermenting cocoa beans. These enzymes, named Pel-22, Pel-66, and Pel-90, were synthesized by Bacillus pumilus BS22, Bacillus subtilis BS66, and Bacillus fusiformis BS90, respectively. The three Pels were produced under their natural conditions and purified from the supernatants using a one-step chromatography method. The purified enzymes exhibited optimum activity at 60°C, and the half-time of thermoinactivation at this temperature was approximately 30 min. Pel-22 had a low specific activity compared with the other two enzymes. However, it displayed high affinity for the substrate, about 2.5-fold higher than those of Pel-66 and Pel-90. The optimum pHs were 7.5 for Pel-22 and 8.0 for Pel-66 and Pel-90. The three enzymes trans-eliminated polygalacturonate in a random manner to generate two long oligogalacturonides, as well as trimers and dimers. A synergistic effect was observed between Pel-22 and Pel-66 and between Pel-22 and Pel-90, but not between Pel-90 and Pel-66. The Pels were also strongly active on highly methylated pectins (up to 60% for Pel-66 and Pel-90 and up to 75% for Pel-22). Fe2+ was found to be a better cofactor than Ca2+ for Pel-22 activity, while Ca2+ was the best cofactor for Pel-66 and Pel-90. The amino acid sequences deduced from the cloned genes showed the characteristics of Pels belonging to Family 1. The pel-66 and pel-90 genes appear to be very similar, but they are different from the pel-22 gene. The characterized enzymes form two groups, Pel-66/Pel-90 and Pel-22; members of the different groups might cooperate to depolymerize pectin during the fermentation of cocoa beans.Cocoa fermentation is a key step in the technological transformation of cocoa into chocolate (6, 33, 35). The fermentation of cocoa beans occurs at two levels: the first level involves reactions that take place in the pulp, in the outer part of the beans, and the second-level reactions are located deep within the cotyledons.Reactions occurring in the pulp mainly concern the transformation of carbohydrates into ethanol and organic acids by a microflora essentially composed of yeast, lactic acid bacteria, acetic acid bacteria, and Bacillus (35). The resulting organic acids produced by the microbial metabolism diffuse into the bean and provoke lowering of the inner pH (16). The low pH, combined with the rise in temperature of the fermenting mass, activates two acidic-pH-dependent enzymes present in the cotyledons: an aspartic endoprotease and a serine carboxypeptidase (6, 7, 43). The combined actions of these enzymes leads to the transformation of storage proteins into hydrophobic amino acids (5), which are known to be the main precursor molecules of cocoa and the eventual chocolate aroma (4, 35).The fermentation process is also associated with the actions of various other plant cell wall-degrading enzymes, namely, pectinolytic enzymes. These enzymes, which allow the degradation of the cocoa pulp (34, 35, 36), facilitate the diffusion of microbial metabolites (essentially acetic acid) into the beans. Furthermore, the oligomers generated from the degradation of pectin polymers are used as a carbon source for the growth of the microorganisms. In view of the role they play, pectinolytic enzymes are not only essential for the normal course of cocoa fermentation, they are also key to the good quality of fermented and dried beans (3, 35).Pectinolytic enzymes are classified into two mains groups according to their mode of attack on pectin molecules: de-esterifying enzymes (pectin methyl esterase [EC 3.1.1.11]), which remove the methoxyl group from pectin, and depolymerases, which cleave the β(1,4)glycosidic bonds between galacturonate units, either by hydrolysis (polygalacturonase [EC 3.2.1.15]) or by trans-elimination (pectin lyase [EC 4.2.2.10] and pectate lyase [Pel] [EC 4.2.2.2]). Among these enzymes, the class of pectate lyases is widely distributed in bacteria and fungi, some phytopathogenic (1, 14, 15) and others, such as members of the genus Bacillus (2, 24, 39, 40), nonpathogenic. Pectate lyases are classified into different families according to their primary amino acid sequences (11, 38). The classification can be found on the CAZy (Carbohydrate-Active EnZymes database) server (http://www.cazy.org/) (10).Over the last 3 decades, polygalacturonase secreted by yeasts has been the sole pectinolytic enzyme identified in cocoa fermentation. However, we recently reported the involvement of pectate lyases produced by Bacillus strains in the cocoa fermentation process (26).Here, we report the biochemical and molecular properties of purified pectate lyases from three different Bacillus strains isolated from fermenting cocoa beans and the characterization of their cloned genes.  相似文献   

16.
Thanatephorus cucumeris is a ubiquitous fungus responsible for many types of plant diseases worldwide. All isolates from infected Hevea brasiliensis trees secreted pectolytic enzymes; polygalacturonase (PG), pectin lyase (PL) and cellulolytic enzymes; beta-glucosidase and cellobiase in culture. The extracts of the rubber tree leaf tissues, inoculated with T. cucumeris did not show any PG activity. However, PL activity was detected in tissue with the establishment of the infection. The levels of beta-glucosidase, an inherent enzyme in Hevea spp. increased rapidly following infection. However, cellobiase was detected only with the initiation of infection. Molecular weights of PG in all isolates were similar and in the range of 53,000 to 58,000. PL also followed the same pattern showing a molecular weight around 39,000.  相似文献   

17.
A strain of Fusarium moniliforme isolated from a tropical mangrove ecosystem near Mumbai, India and deposited in the National Collection of Industrial Microorganisms (NCIM) as F. moniliforme NCIM 1276. The organism produced a single extracellular polygalacturonase (PG I) [EC 3.2.1.15] at pH 5 and a single pectate lyase (PL) [EC 4.2.2.2] at pH 8 in liquid medium containing 1% citrus pectin. Growth on semi-solid medium containing wheat bran and orange pulp resulted in a three-fold increase in PG production and a two-fold increase in PL production in comparison with that in liquid medium. The increased production of PG on semi-solid media, as compared to production in liquid media was investigated. The increased production of PG was partly due to the expression of a second polygalacturonase (PG II) isoenzyme by the fungus which was biochemically different from the one produced in liquid medium. The second PG II was a 30.6kDa enzyme, had an alkaline pI of 8.6, the Km was 0.166mg ml(-1), Vmax 13.33 micromol min(-1) mg(-1) and the kcat was 403 min(-1). It had a specific activity of 18.66U mg(-1). The differences between the PGs (PG I and PG II) suggest that the two enzymes are the products of different genes. The fungus also produced the same two PGs when it infected Lycopersicon esculentum (tomato). Only one PL was produced irrespective of growth conditions.  相似文献   

18.
A strain of Kluyveromyces marxianus (CCT 3172), isolated from a cocoa fermentation in Brazil, secreted an endopolygalacturonase (PG) when grown under self-induced anaerobic conditions; neither polymethylesterase nor pectate lyase appeared in culture filtrates. Replacing glucose in the medium with sucrose had no effect on PG secretion or ethanol production. Growth in fructose-containing medium retarded secretion of PG and ethanol, but had no effect on growth. Growth and ethanol production in media containing galactose resembled those in fructose-containing medium, although PG secretion was lowered. Growth and PG secretion were considerably retarded in xylose-containing medium, and were similarly affected in media containing different concentrations of glucose. Varying the concentration of ammonium sulphate in media had no effect on growth or PG secretion.  相似文献   

19.
Summary Byssochlamys fulva was grown in two fermentation media using shake flasks, stirred fermentor and disc fermentor under conditions to give maximum production of pectolytic enzymes. Only polygalacturonase activity was detected in the culture filtrates during all fermentations. In all production conditions studied, no evidence of pectin methylesterase, pectin lyase, cellulase or proteinase activities were found. The maximum polygalacturonase activity (4.5 units/ml) was achieved when the microorganism was grown on medium II in shake flasks at pH 4.0–4.5 and 30°C after 12 days of fermentation.  相似文献   

20.
The toxigenic potential of Bacillus species isolated from the traditional fermented condiment okpehe was determined; this is aimed at selection of non-toxigenic bacilli as starter cultures to bring about production of safe product. B. subtilis and B. cereus strains isolated from okpehe were evaluated for their possible possession of virulence characteristics. Fifty isolates were screened for their ability to produce diarrhoea enterotoxin by reversed passive latex agglutination (BCET-RPLA) test kit; the result showed that 40% of the B. cereus strains were toxigenic. The ability of the selected isolates to compete in situ and in vitro toxin production during the fermentation was also determined. The enterotoxin was not detected using BCET-RPLA kit in the spontaneously fermented samples of okpehe, but the toxin was detected in the okpehe samples fermented using B. cereus enterotoxin producer in mixed starter culture fermentation. The PCR amplification of virulence genes revealed that Bacillus cereus and B. licheniformis, a strain from the B. subtilis group, contained DNA sequences encoding the haemolysin BL (hblD) enterotoxin complex. The growth ability of B. cereus strains to high population during the fermentation and the presence of detectable diarroheagenic genes in B. cereus and B. licheniformis showed that strains carrying virulence characteristics cannot be totally ruled out in traditionally fermented okpehe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号