首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noninvasive imaging techniques have been used to assess pulmonary edema following exercise but results remain equivocal. Most studies examining this phenomenon have used male subjects while the female response has received little attention. Some suggest that women, by virtue of their smaller lungs, airways, and diffusion surface areas may be more susceptible to pulmonary limitations during exercise. Accordingly, the purpose of this study was to determine if intense normobaric hypoxic exercise could induce pulmonary edema in women. Baseline lung density was obtained in eight highly trained female cyclists (mean +/- SD: age = 26 +/- 7 yr; height = 172.2 +/- 6.7 cm; mass = 64.1 +/- 6.7 kg; Vo(2max) = 52.2 +/- 2.2 ml.kg(-1).min(-1)) using computed tomography (CT). CT scans were obtained at the level of the aortic arch, the tracheal carina, and the superior end plate of the tenth thoracic vertebra. While breathing 15% O(2), subjects then performed five 2.5-km cycling intervals [mean power = 212 +/- 31 W; heart rate (HR) = 94.5 +/- 2.2%HRmax] separated by 5 min of recovery. Throughout the intervals, subjects desaturated to 82 +/- 4%, which was 13 +/- 2% below resting hypoxic levels. Scans were repeated 44 +/- 8 min following exercise. Mean lung density did not change from pre (0.138 +/- 0.014 g/ml)- to postexercise (0.137 +/- 0.011 g/ml). These findings suggest that pulmonary edema does not occur in highly trained females following intense normobaric hypoxic exercise.  相似文献   

2.
Many avian species exhibit an extraordinary ability to exercise under hypoxic condition compared with mammals, and more efficient pulmonary O(2) transport has been hypothesized to contribute to this avian advantage. We studied six emus (Dromaius novaehollandaie, 4-6 mo old, 25-40 kg) at rest and during treadmill exercise in normoxia and hypoxia (inspired O(2) fraction approximately 0.13). The multiple inert gas elimination technique was used to measure ventilation-perfusion (V/Q) distribution of the lung and calculate cardiac output and parabronchial ventilation. In both normoxia and hypoxia, exercise increased arterial Po(2) and decreased arterial Pco(2), reflecting hyperventilation, whereas pH remained unchanged. The V/Q distribution was unimodal, with a log standard deviation of perfusion distribution = 0.60 +/- 0.06 at rest; this did not change significantly with either exercise or hypoxia. Intrapulmonary shunt was <1% of the cardiac output in all conditions. CO(2) elimination was enhanced by hypoxia and exercise, but O(2) exchange was not affected by exercise in normoxia or hypoxia. The stability of V/Q matching under conditions of hypoxia and exercise may be advantageous for birds flying at altitude.  相似文献   

3.
The purpose of this study was to investigate the hypothesis that reductions in Na+-K+- ATPase activity are associated with neuromuscular fatigue following isometric exercise. In control (Con) and exercised (Ex) legs, force and electromyogram were measured in 14 volunteers [age, 23.4 +/- 0.7 (SE) yr] before and immediately after (PST0), 1 h after (PST1), and 4 h after (PST4) isometric, single-leg extension exercise at ~60% of maximal voluntary contraction for 30 min using a 0.5 duty cycle (5-s contraction, 5-s rest). Tissue was obtained from vastus lateralis muscle before exercise in Con and after exercise in both the Con (PST0) and Ex legs (PST0, PST1, PST4), for the measurements of Na+-K+-ATPase activity, as determined by the 3-O-methylfluorescein phosphatase (3-O-MFPase) assay. Voluntary (maximal voluntary contraction) and elicited (10, 20, 50, 100 Hz) force was reduced 30-55% (P < 0.05) at PST0 and did not recover by PST4. Muscle action potential (M-wave) amplitude and area (measured in the vastus medialis) and 3-O-MFPase activity at PST0-Ex were less than that at PST0-Con (P < 0.05) by 37, 25, and 38%, respectively. M-wave area at PST1-Ex was also less than that at PST1-Con (P < 0.05). Changes in 3-O-MFPase activity correlated to changes in M-wave area across all time points (r = 0.38, P < 0.05, n = 45). These results demonstrate that Na+-K+- ATPase activity is reduced by sustained isometric exercise in humans from that in a matched Con leg and that this reduction in Na+-K+-ATPase activity is associated with loss of excitability as indicated by M-wave alterations.  相似文献   

4.
Exercise-induced intrapulmonary arteriovenous shunting, as detected by saline contrast echocardiography, has been demonstrated in healthy humans. We have previously suggested that increases in both pulmonary pressures and blood flow associated with exercise are responsible for opening these intrapulmonary arteriovenous pathways. In the present study, we hypothesized that, although cardiac output and pulmonary pressures would be higher in hypoxia, the potent pulmonary vasoconstrictor effect of hypoxia would actually attenuate exercise-induced intrapulmonary shunting. Using saline contrast echocardiography, we examined nine healthy men during incremental (65 W + 30 W/2 min) cycle exercise to exhaustion in normoxia and hypoxia (fraction of inspired O(2) = 0.12). Contrast injections were made into a peripheral vein at rest and during exercise and recovery (3-5 min postexercise) with pulmonary gas exchange measured simultaneously. At rest, no subject demonstrated intrapulmonary shunting in normoxia [arterial Po(2) (Pa(O(2))) = 98 +/- 10 Torr], whereas in hypoxia (Pa(O(2)) = 47 +/- 5 Torr), intrapulmonary shunting developed in 3/9 subjects. During exercise, approximately 90% (8/9) of the subjects shunted during normoxia, whereas all subjects shunted during hypoxia. Four of the nine subjects shunted at a lower workload in hypoxia. Furthermore, all subjects continued to shunt at 3 min, and five subjects shunted at 5 min postexercise in hypoxia. Hypoxia has acute effects by inducing intrapulmonary arteriovenous shunt pathways at rest and during exercise and has long-term effects by maintaining patency of these vessels during recovery. Whether oxygen tension specifically regulates these novel pathways or opens them indirectly via effects on the conventional pulmonary vasculature remains unclear.  相似文献   

5.
Women use more fat during endurance exercise as evidenced by a lower respiratory exchange ratio (RER). The contribution of intramyocellular lipid (IMCL) to lipid oxidation during endurance exercise is controversial, and studies investigating sex differences in IMCL utilization have found conflicting results. We determined the effect of sex on net IMCL use during an endurance exercise bout using an ultrastructural evaluation. Men (n = 17) and women (n = 19) completed 90-min cycling at 63% Vo(2peak). Biopsies were taken before and after exercise and fixed for electron microscopy to determine IMCL size, # IMCL/area, IMCL area density, and the % IMCL touching mitochondria. Women had a lower RER and carbohydrate oxidation rate and a higher lipid oxidation rate during exercise (P < 0.05), compared with men. Women had a higher # IMCL/area and IMCL area density (P < 0.05), compared with men. Women, but not men, had a higher % IMCL touching mitochondria postexercise (P = 0.03). Exercise decreased IMCL area density (P = 0.01), due to a decrease in the # IMCL/area (P = 0.02). There was no sex difference in IMCL size or net use. In conclusion, women have higher IMCL area density compared with men, due to an increased # IMCL and not an increased IMCL size, as well as an increased % IMCL touching mitochondria postexercise. Endurance exercise resulted in a net decrease in IMCL density due to decreased number of IMCL, not decreased IMCL size, in both sexes.  相似文献   

6.
In previous work using prolonged, light cycle exercise, we were unable to demonstrate an effect of acute plasma volume (PV) expansion on glucose kinetics or substrate oxidation, despite a decline in whole-body lipolysis (Phillips et al., 1997). However, PV is known to decrease arterial O2 content. The purpose of this study was to examine whether substrate turnover and oxidation would be altered with heavier exercise where the challenge to O2 delivery is increased. Eight untrained males (VO2max = 3.52 +/- 0.12 l/min) twice performed 90 min of cycle ergometry at 62 % VO2peak, both prior to (CON) and following induced plasma volume expansion (Dextran [6 %] or Pentaspan [10 %]) (6.7 ml/kg) (PVX). Glucose and glycerol kinetics were determined with primed constant infusions of [6.6-(2)H2] glucose and [(2)H5] glycerol, respectively. PVX resulted in a 15.8 +/- 2.2 % increase (p < 0.05) in PV. Glucose and glycerol appearance (Ra) and utilization (Rd), although increasing progressively (p < 0.05) with exercise, were not different between conditions. Similarly, no differences in substrate oxidation, either fat or carbohydrate, were observed between the two conditions. Prolonged exercise resulted in an increase (p < 0.05) in plasma glucagon and a decrease (p < 0.05) in plasma insulin during both conditions. With PVX, the exercise-induced increase in glucagon was diminished (p < 0.05). We conclude that impairment in O2 content mediated by an elevated PV does not alter glucose, and glycerol kinetics or substrate oxidation even at moderate exercise intensity.  相似文献   

7.
Most organisms live in changing environments or do not use the same resources at different stages of their lives or in different seasons. As a result, density dependence will affect populations differently at different times. Such sequential density dependence generates markedly different population responses compared to the unrealistic assumption that all events occur simultaneously. Various field studies have also shown that the conditions that individuals experience during one period can influence success and per capita vital rates during the following period. These carry-over effects further complicate any general principles and increase the diversity of possible population dynamics. In this review, we describe how studies of sequential density dependence have diverged in directions that are both taxon-specific and have non-overlapping terminology, despite very similar underlying problems. By exploring and highlighting these similarities, we aim to improve communication between fields, clarify common misunderstandings, and provide a framework for improving conservation and management practices, including sustainable harvesting theory.  相似文献   

8.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

9.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

10.
Ventilation-perfusion (VA/Q) inequality has been shown to increase with exercise. Potential mechanisms for this increase include nonuniform pulmonary vasoconstriction, ventilatory time constant inequality, reduced large airway gas mixing, and development of interstitial pulmonary edema. We hypothesized that persistence of VA/Q mismatch after ventilation and cardiac output subside during recovery would be consistent with edema; however, rapid resolution would suggest mechanisms related to changes in ventilation and blood flow per se. Thirteen healthy males performed near-maximal cycle ergometry at an inspiratory PO2 of 91 Torr (because hypoxia accentuates VA/Q mismatch on exercise). Cardiorespiratory variables and inert gas elimination patterns were measured at rest, during exercise, and between 2 and 30 min of recovery. Two profiles of VA/Q distribution behavior emerged during heavy exercise: in group 1 an increase in VA/Q mismatch (log SDQ of 0.35 +/- 0.02 at rest and 0.44 +/- 0.02 at exercise; P less than 0.05, n = 7) and in group 2 no change in VA/Q mismatch (n = 6). There were no differences in anthropometric data, work rate, O2 uptake, or ventilation during heavy exercise between groups. Group 1 demonstrated significantly greater VA/Q inequality, lower vital capacity, and higher forced expiratory flow at 25-75% of forced vital capacity for the first 20 min during recovery than group 2. Cardiac index was higher in group 1 both during heavy exercise and 4 and 6 min postexercise. However, both ventilation and cardiac output returned toward baseline values more rapidly than did VA/Q relationships. Arterial pH was lower in group 1 during exercise and recovery. We conclude that greater VA/Q inequality in group 1 and its persistence during recovery are consistent with the hypothesis that edema occurs and contributes to the increase in VA/Q inequality during exercise. This is supported by observation of greater blood flows and acidosis and, presumably therefore, higher pulmonary vascular pressures in such subjects.  相似文献   

11.
We examined whether lactic acidemia-induced hyperemia at the onset of high-intensity leg exercise contributed to the speeding of pulmonary O(2) uptake (VO(2)) after prior heavy exercise of the same muscle group or a different muscle group (i.e., arm). Six healthy male subjects performed two protocols that consisted of two consecutive 6-min exercise bouts separated by a 6-min baseline at 0 W: 1) both bouts of heavy (work rate: 50% of lactate threshold to maximal VO(2)) leg cycling (L1-ex to L2-ex) and 2) heavy arm cranking followed by identical heavy leg cycling bout (A1-ex to A2-ex). Blood lactate concentrations before L1-ex, L2-ex, and A2-ex averaged 1.7 +/- 0.3, 5.6 +/- 0.9, and 6.7 +/- 1.4 meq/l, respectively. An "effective" time constant (tau) of VO(2) with the use of the monoexponential model in L2-ex (tau: 36.8 +/- 4.3 s) was significantly faster than that in L1-ex (tau: 52.3 +/- 8.2 s). Warm-up arm cranking did not facilitate the VO(2) kinetics for the following A2-ex [tau: 51.7 +/- 9.7 s]. The double-exponential model revealed no significant change of primary tau (phase II) VO(2) kinetics. Instead, the speeding seen in the effective tau during L2-ex was mainly due to a reduction of the VO(2) slow component. Near-infrared spectroscopy indicated that the degree of hyperemia in working leg muscles was significantly higher at the onset of L2-ex than A2-ex. In conclusion, facilitation of VO(2) kinetics during heavy exercise preceded by an intense warm-up exercise was caused principally by a reduction in the slow component, and it appears unlikely that this could be ascribed exclusively to systemic lactic acidosis.  相似文献   

12.
This project examined the effects of repeated, resting cold-water immersion on metabolic heat production and core temperature defence during subsequent rest and exercising immersions. Seven males undertook 15 days of cold-water adaptation, immersed to the fourth intercostal space, with cold-water stress tests (CWST) on days 1, 8 and 15 (18.1 SD 0.1 degree C: 60 min seated, followed by 30 min cycling (1 W.kg-1)), and 90-min resting immersions (18.4 SD 0.4 degree C) on each of the intervening days. Adaptation elicited an habituated thermogenic response during the rest phase of CWST3 beyond 20 min, compared to CWST1 (P < 0.05), with oxygen consumption averaging 11.15 (+/- 0.25) ml.kg-1.min-1 and 8.61 (+/- 0.90) ml.kg-1.min-1 by 50 min, for CWST1 and CWST3, respectively. During exercise, this metabolic blunting was only apparent over the first 10-min period (60-70 min). No significant differences were observed during either the rest or exercise phases of the CWSTs for oesophageal temperature (Tes). While repeated cold-water exposures produced an habituated-thermogenic response, for an equivalent drop in Tes during rest, neither this response, nor an elevated thermogenesis, were apparent during subsequent cold-water exercise.  相似文献   

13.
14.
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. Dynamic cerebral autoregulation (CA) was assessed using transfer-function analysis. Hypoxic exercise resulted in increases in ventilation, hypocapnia, heart rate, and cardiac output when compared with normoxic exercise (P < 0.05); these responses were unchanged following IHC but were elevated following the IH and CH exposure (P < 0.05) with no between-intervention differences. Following IH and/or CH exposure, the greater hypocapnia during hypoxic exercise provoked a decrease in MCAv (P < 0.05 vs. preexposure) that was related to lowered cerebral oxygenation (r = 0.54; P < 0.05). Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.  相似文献   

15.
Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise.  相似文献   

16.
Hypoxia and hypoxic exercise increase pulmonary arterial pressure, cause pulmonary capillary recruitment, and may influence the ability of the lungs to regulate fluid. To examine the influence of hypoxia, alone and combined with exercise, on lung fluid balance, we studied 25 healthy subjects after 17-h exposure to 12.5% inspired oxygen (barometric pressure = 732 mmHg) and sequentially after exercise to exhaustion on a cycle ergometer with 12.5% inspired oxygen. We also studied subjects after a rapid saline infusion (30 ml/kg over 15 min) to demonstrate the sensitivity of our techniques to detect changes in lung water. Pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (D(M)) were determined by measuring the diffusing capacity of the lungs for carbon monoxide and nitric oxide. Lung tissue volume and density were assessed using computed tomography. Lung water was estimated by subtracting measures of Vc from computed tomography lung tissue volume. Pulmonary function [forced vital capacity (FVC), forced expiratory volume after 1 s (FEV(1)), and forced expiratory flow at 50% of vital capacity (FEF(50))] was also assessed. Saline infusion caused an increase in Vc (42%), tissue volume (9%), and lung water (11%), and a decrease in D(M) (11%) and pulmonary function (FVC = -12 +/- 9%, FEV(1) = -17 +/- 10%, FEF(50) = -20 +/- 13%). Hypoxia and hypoxic exercise resulted in increases in Vc (43 +/- 19 and 51 +/- 16%), D(M) (7 +/- 4 and 19 +/- 6%), and pulmonary function (FVC = 9 +/- 6 and 4 +/- 3%, FEV(1) = 5 +/- 2 and 4 +/- 3%, FEF(50) = 4 +/- 2 and 12 +/- 5%) and decreases in lung density and lung water (-84 +/- 24 and -103 +/- 20 ml vs. baseline). These data suggest that 17 h of hypoxic exposure at rest or with exercise resulted in a decrease in lung water in healthy humans.  相似文献   

17.
We examined the validity and usefulness of a low-pass filter (LPFILTER) to reduce point-to-point variability and enhance parameter estimation of the kinetics of blood flow (BF). Computer simulations were used to determine the power spectrum of simulated responses. Moreover, we studied the leg BF response to a single transition in four subjects during supine knee-extension exercise using three methods of data processing [beat-by-beat, average of 3 cardiac cycles (AVG3 BEATS), and LPFILTER]. The power spectrum of BF containing the kinetics information (0.05; n=4). However, LPFILTER (cutoff=0.2 Hz) resulted in a significantly lower standard error of the estimate for all parameters (P<0.05). The means+/-SD for the standard error of the estimate for Beat-by-Beat, AVG3 BEATS, and LPFILTER were, respectively, time constant-phase 1=5.0+/-1.1 s, 4.5+/-2.1 s, and 0.3+/-0.2 s; time delay-phase 2=17.8+/-7.9 s, 12.8+/-7.5 s, and 1.4+/-1.4 s; time constant-phase 2=15.8+/-4.6 s, 9.9+/-2.9 s, and 1.1+/-0.5 s. In conclusion, LPFILTER appeared to be a valid procedure providing a high signal-to-noise ratio and data density and thus LPFILTER resulted in the smallest confidence interval for parameter estimates of BF kinetics.  相似文献   

18.
The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients.  相似文献   

19.
We addressed two questions concerned with the metabolic cost and performance of respiratory muscles in healthy young subjects during exercise: 1) does exercise hyperpnea ever attain a "critical useful level"? and 2) is the work of breathing (WV) at maximum O2 uptake (VO2max) fatiguing to the respiratory muscles? During progressive exercise to maximum, we measured tidal expiratory flow-volume and transpulmonary pressure- (Ptp) volume loops. At rest, subjects mimicked their maximum and moderate exercise Ptp-volume loops, and we measured the O2 cost of the hyperpnea (VO2RM) and the length of time subjects could maintain reproduction of their maximum exercise loop. At maximum exercise, the O2 cost of ventilation (VE) averaged 10 +/- 0.7% of the VO2max. In subjects who used most of their maximum reserve for expiratory flow and for inspiratory muscle pressure development during maximum exercise, the VO2RM required 13-15% of VO2max. The O2 cost of increasing VE from one work rate to the next rose from 8% of the increase in total body VO2 (VO2T) during moderate exercise to 39 +/- 10% in the transition from heavy to maximum exercise; but in only one case of extreme hyperventilation, combined with a plateauing of the VO2T, did the increase in VO2RM equal the increase in VO2T. All subjects were able to voluntarily mimic maximum exercise WV for 3-10 times longer than the duration of the maximum exercise. We conclude that the O2 cost of exercise hyperpnea is a significant fraction of the total VO2max but is not sufficient to cause a critical level of "useful" hyperpnea to be achieved in healthy subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Fertile eggs from the domestic fowl were incubated under normobaric normoxic (21% O2), hypoxic (14% O2), and hyperoxic (40% O2) conditions in order to examine the influence of the prevailing oxygen level on the growth and maturation of the chorioallantoic membrane. Eggs were sampled at regular stages throughout incubation for morphometric analysis. Under normoxic conditions, maturation of the capillary plexus occurred in two distinct stages, both of which contributed to a reduction in the thickness of the air-blood barrier. Between days 6 and 10, the capillaries sprouted and fused to form a dense plexus. Subsequently, between days 10 and 14, this plexus invaginated into the chorionic epithelium. Differentiation of the chorioallantoic membrane appeared maximal by the end of this period. Hypoxia resulted in diminished growth of the embryo and chorioallantoic membrane, but in accelerated maturation of the capillary plexus. Hyperoxia had a less marked effect but appeared to retard the final invagination of the plexus, resulting in a thicker air-blood barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号