首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of 31P and 2H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers.  相似文献   

2.
The influence of 2.45 GHz microwave exposure (6 mW/g) on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. The enzyme carbonic anhydrase (CA) was entrapped into cationic unilamellar vesicles. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (PNPA) across intact liposome bilayer. A twofold increase in the diffusion rate of PNPA through the lipid bilayer was observed after 120 min of microwave radiation compared to temperature control samples. The microwave effect was time dependent. The enzyme activity, as a function of increased diffusion of PNPA, rises over 120 min from 22.3% to 80%. The increase in stearylamine concentration reduces the enzyme activity from 80% to 65% at 120 min. No enzyme leakage was observed. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Antiamoebin (AAM) is a polypeptide antibiotic that is capable of forming ion channels in phospholipid membranes: planar bilayer studies have suggested the channels are octamers. The crystal structure of a monomeric form of AAM has provided the basis for molecular modelling of an octameric helical bundle channel. The channel model is funnel-shaped due to a substantial bend in the middle of the polypeptide chain caused by the presence of several imino acids. Inter-monomer hydrogen bonds orientate a ring of glutamine side chains to form a constriction in the pore lumen. The channel lumen is lined both by side chains of Gln11 and by polypeptide backbone carbonyl groups. Electrostatic calculations on the model are compatible with a channel that transports cations across membranes. The AAM channel model is compared with the crystal structures of two bacterial (KcsA andMthK) potassium channels. AAM and the potassium channels exhibit common functional features, such as cation-selectivity and similar single channel conductances. Common structural features include being multimers, each formed from a bundle of eight transmembrane helices, with lengths roughly comparable to the thickness of lipid bilayers. In addition, they all have aromatic amino acids that lie at the bilayer interfaces and which may aid in the stabilization of the transmembrane helices, as well as narrower constrictions that define the ion binding sites or selectivity filters in the pore lumen. The commonality of structural and functional features in these channels thus suggests that antiamoebin is a good, simple model for more complex bacterial and eukaryotic ion channels, capable of providing insight into details of the mechanisms of ion transport and multimeric channel stability.  相似文献   

4.
We have employed an amphiphilic fluorescent probe to elucidate the mechanism by which a class of oxyethylene-oxypropylene copolymers catalyzes the insertion of hydrophobic or amphiphilic molecules into membranes. The rate of binding can be accelerated by over two orders of magnitude in the presence of the catalyst which does not itself disrupt the lipid bilayer. The rate of probe binding to lipid vesicles does not depend on the lipid concentration in the presence or absence of catalyst but is linearly related to the concentration of the catalyst. Probe binding to the polyol surfactant appears to be a component of the catalytic mechanism and equilibrium binding parameters can be determined; these are used to indirectly establish quantitative binding parameters for the probe to the vesicle membrane. The polyol surfactant is also shown to catalyze insertion of the probe into the outer leaflet of a hemispherical lipid bilayer and the plasma membrane of HeLa cells. The latter were also stained by catalyzed transfer of a fluorescent lipid from lipid vesicles. The permeability of the cell membrane is not significantly altered under any of the catalytic conditions. These data, taken together, suggest that the polyol surfactant extracts a monomeric substrate molecule from its aggregate or microcrystal and passes it to the membrane via a loose and transient contact.  相似文献   

5.
Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed.  相似文献   

6.
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely ornithine (Orn), α,γ-diaminobutyric acid (Dab) and α, β-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.  相似文献   

7.
The effects of the transmembrane alpha-helical peptide Ac-K(2)(LA)(12)K(2)-amide ((LA)(12)) on the phase transition and dynamics of saturated dimyristoylphosphatidylcholine (DMPC) membranes were investigated at different pH using conventional and saturation-recovery EPR observations of phosphatidylcholine spin labels. At a peptide-to-DMPC ratio of 1/10, the main phase-transition temperature of the DMPC bilayer is decreased by 4.0 degrees C when measured at pH 7.0, by 1.6 degrees C when measured at pH 9.5, and not affected when measured at pH 11.5. This reversible pH effect is due to the subsequent neutralization of the positive charges of lysine side chains at both ends of (LA)(12). Apparent pK(a)s of the lysine side chain amino groups of (LA)(12) in DMPC bilayer are 8.6 and approximately 10.9, as compared with the pK(a) value of 10.5 for these groups when lysine is dissolved in water. Saturation-recovery curves as a function of oxygen concentration using phosphatidylcholine spin labels in DMPC bilayer containing (LA)(12) are always mono-exponential when measured at pH 7.0 and 9.5. This observation is consistent with the hypothesis that the lipid exchange rates among the bulk, boundary, and (LA)(12)-rich regions are faster than 0.5 micros, the electron spin-lattice relaxation time in the presence of molecular oxygen, suggesting that stable oligomers of (LA)(12) do not form. Neutralization of one lysine side chain positive charge on each end of the peptide significantly decreases the ordering effect of (LA)(12) on the lipid hydrocarbon chains, while its effect on the reorientational motion of terminal groups of lipid hydrocarbon chains is rather moderate. It does not affect the local diffusion-solubility product of oxygen measured in the DMPC-(LA)(12) membrane interior.  相似文献   

8.
Physiological quinones carrying isoprenoid side chains have been compared with homologues lacking the side chain, for their ability to carry electrons and protons from dithionite to ferricyanide, trapped in liposomes. Six differential observations were made: (1) Plastoquinone and ubiquinones, with a side chain of more than two isoprene units, are by far better mediators than their short-chain homologues. Also other benzoquinones lacking a long side chain are poor catalysts, except dimethyl-methylenedioxy-p-benzoquinone, a highly autooxidizable compound. Tocopherol is a good catalyst. (2) Vitamin K-1 and K-2 are poor mediators compared to vitamin K-3. (3) The reaction catalyzed by quinones carrying long isoprenoid side chains has an about three-fold higher activation energy, irrespective of the catalytic efficiency. (4) The reaction catalyzed by quinones lacking a long side chain follows pseudo first-order kinetics, while the reaction with quinones carrying a long side chain is of apparently higher order. (5) The rate with ubiquinone-1 is increasing pH, while with ubiquinone-9 it is decreasing. (6) The reaction mediated by short-chain quinones seems to be satuarated at lower dithionite concentration. We conclude that isoprenoid quinones are able to translocate electrons and protons in lipid membranes, and that the side chain has a strong impact on the mechanism. This and the relevance of the model reaction for electron and proton transport in photosynthesis and respiration is discussed.  相似文献   

9.
A variety of different lipids containing dienoyl groups in the side chains were tested for membrane formation using the planar lipid bilayer approach. One of these lipids formed stable bilayers which could be polymerized using UV-illumination. The influence of the polymerization was studied in monolayers, lipid vesicles and planar bilayers. The stability of the lipid bilayer membranes was increased by polymerization. Thus, the lifetime of the membranes increased from about 1 h to 4–5 h or longer. Furthermore, the specific conductance of unmodified membranes and of carrier-mediated transport is reduced. The transport of lipophilic ions was investigated as a function of polymerization using the charge-pulse method. The absorption of dipicrylamine (DPA-) is not affected. The translocation of this compound and of tetraphenylborate (B(Ph) 4 - ) showed a strong decrease with polymerization time. The influence of polymerization on the membrane structure may be explained on the basis of a strong viscosity increase in the lipid bilayer membrane.  相似文献   

10.
Molecular dynamics computer simulations of pentachlorophenol (PCP) in palmitoyl-oleoyl-phosphatidylethanolamine and palmitoyl-oleoyl-phosphatidylcholine lipid bilayers were carried out to investigate the distribution of PCP and the effects of PCP on the phospholipid bilayer structure. Starting from two extreme starting structures, including PCP molecules outside the lipid bilayer, the PCP distribution converges in simulations of up to 50 ns. PCP preferentially occupies the region between the carbonyl groups and the double bonds in the acyl chains of the lipid molecules in the bilayer. In the presence of PCP, the lipid chain order increases somewhat in both chains, and the average tilt angle of the lipid chains decreases. The increase in the lipid chain order in the presence of PCP was more pronounced in the palmitoyl-oleoyl-phosphatidylcholine bilayer compared to the palmitoyl-oleoyl-phosphatidylethanolamine bilayer. The number of trans conformations of lipid chain dihedrals does not change significantly. PCP aligns parallel to the alkyl chains of the lipid to optimize the packing in the dense ordered chain region of the bilayer. The hydroxyl group of PCP forms hydrogen bonds with both water and lipid oxygen atoms in the water/lipid interface region.  相似文献   

11.
Peptide-membrane interactions are important for understanding the binding, partitioning, and folding of membrane proteins; the activity of antimicrobial and fusion peptides; and a number of other processes. We describe molecular dynamics simulations (10-25 ns) of two pentapeptides Ace-WLXLL (with X = Arg or Lys side chain) (White, S. H., and Wimley, W.C. (1996) Nat. Struct. Biol. 3, 842-848) in water and three different membrane mimetic systems: (i) a water/cyclohexane interface, (ii) water-saturated octanol, and (iii) a solvated dioleoylphosphatidylcholine bilayer. A salt bridge is found between the protonated Arg or Lys side chains with the carboxyl terminus at the three interfaces. In water/cyclohexane, the salt bridge is most exposed to the water phase and least stable. In water/octanol and the lipid bilayer systems, the salt bridge once formed persists throughout the simulations. In the lipid bilayer, the salt bridge is more stable when the peptide penetrates deeper into the bilayer. In one of two peptides, a cation-pi interaction between the Arg and the Trp side chains is stable in the lipid bilayer for about 15 ns before breaking. In all cases, the conformations of the peptides are restricted by their presence at the interface and can be assigned to a few major conformational clusters. Side chains facing the water phase are most mobile. In the lipid bilayer, the peptides remain in the interface area, where they overlap with the carbonyl area of the lipid bilayer and perturb the local density profile of the bilayer. The tryptophan side chain remains in the water-lipid interface, where it interacts with the lipid choline group and forms hydrogen bonds with the ester carbonyl of the lipid and with water in the interface.  相似文献   

12.
The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side.  相似文献   

13.
The present study investigates the relationships between structural polymorphism, adsorption onto membrane mimetic support, lipid disturbance, and biological activity of bactericidal 23-residue, glycine-leucine-rich dermaseptin orthologues from the Phyllomedusinae frog skin, the "plasticins". Biological activities were evaluated using the membrane models DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) for prokaryotic membranes and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) for eukaryotic membranes. We performed a conformational analysis of plasticins by molecular simulations and spectroscopic methods and analyzed phospholipid perturbations by infrared spectroscopy. Adsorption onto synthetic model membranes was quantified by surface plasmon resonance. Biological assays including antimicrobial and membrane potential-dissipating activities, together with hemolytic tests and imaging analysis of cytotoxicity, were carried out to clarify the peptide-membrane interactions. Two major groups were distinguished: (i) Neutral plasticins revealed the presence of strong beta-structures with the zwitterionic or anionic phospholipid vesicles. They were weakly adsorbed in the range of antibacterial activity concentrations (micromolar). Nevertheless, for millimolar concentrations, they caused perturbations at the interface peptide-DMPG vesicles and in the bilayer alkyl chains, suggesting insertion into bacterial membranes. (ii) Cationic plasticins revealed multiple conformational transitions, including destabilized helix states, beta-structures, and disordered states. Peptide-lipid complex densities depended on hydrophobic bond strengths. The most soluble cationic plasticins were strongly adsorbed, with stable peptide-lipid interactions inducing noticeable perturbations of bilayer alkyl chains, pointing out possible insertion into bacterial membranes. In contrast, cytotoxic plasticins were less adsorbed, with less stable peptide-lipid interactions causing membrane dehydration, formation of peptide-membrane hydrogen bonds, and little disturbances of lipid alkyl chains. These characteristics could be compatible with their putative action on intracellular targets leading to apoptosis.  相似文献   

14.
Cellular membrane composition defines A beta-lipid interactions.   总被引:1,自引:0,他引:1  
Alzheimer's disease pathology has demonstrated amyloid plaque formation associated with plasma membranes and the presence of intracellular amyloid-beta (A beta) accumulation in specific vesicular compartments. This suggests that lipid composition in different compartments may play a role in A beta aggregation. To test this hypothesis, we have isolated cellular membranes from human brain to evaluate A beta 40/42-lipid interactions. Plasma, endosomal, lysosomal, and Golgi membranes were isolated using sucrose gradients. Electron microscopy demonstrated that A beta fibrillogenesis is accelerated in the presence of plasma and endosomal and lysosomal membranes with plasma membranes inducing an enhanced surface organization. Alternatively, interaction of A beta with Golgi membranes fails to progress to fibril formation, suggesting that A beta-Golgi head group interaction stabilizes A beta. Fluorescence spectroscopy using the environment-sensitive probes 1,6-diphenyl-1,3,5-hexatriene, laurdan, N-epsilon-dansyl-L-lysine, and merocyanine 540 demonstrated variations in the inherent lipid properties at the level of the fatty acyl chains, glycerol backbone, and head groups, respectively. Addition of A beta 40/42 to the plasma and endosomal and lysosomal membranes decreases the fluidity not only of the fatty acyl chains but also the head group space, consistent with A beta insertion into the bilayer. In contrast, the Golgi bilayer fluidity is increased by A beta 40/42 binding which appears to result from lipid head group interactions and the production of interfacial packing defects.  相似文献   

15.
The membrane interactions and position of a positively charged and highly aromatic peptide derived from a secretory carrier membrane protein (SCAMP) are examined using magnetic resonance spectroscopy and several biochemical methods. This peptide (SCAMP-E) is shown to bind to membranes containing phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2, and sequester PI(4,5)P2 within the plane of the membrane. Site-directed spin labeling of the SCAMP-E peptide indicates that the position and structure of membrane bound SCAMP-E are not altered by the presence of PI(4,5)P2, and that the peptide backbone is positioned within the lipid interface below the level of the lipid phosphates. A second approach using high-resolution NMR was used to generate a model for SCAMP-E bound to bicelles. This approach combined oxygen enhancements of nuclear relaxation with a computational method to dock the SCAMP-E peptide at the lipid interface. The model for SCAMP generated by NMR is consistent with the results of site-directed spin labeling and places the peptide backbone in the bilayer interfacial region and the aromatic side chains within the lipid hydrocarbon region. The charged side chains of SCAMP-E lie well within the interface with two arginine residues lying deeper than a plane defined by the position of the lipid phosphates. These data suggest that SCAMP-E interacts with PI(4,5)P2 through an electrostatic mechanism that does not involve specific lipid-peptide contacts. This interaction may be facilitated by the position of the positively charged side chains on SCAMP-E within a low-dielectric region of the bilayer interface.  相似文献   

16.
Difference infrared spectroscopy has been used to study the way in which the intrinsic molecules gramicidin A, alamethicin and bacteriorhodopsin perturb their environment when present within a lipid bilayer structure. Dimyristoylphosphatidylcholine containing perdeuterated chains has been used to enable the lipid chain C-2H stretching absorption band to be separated from the C-H bands arising from the intrinsic polypeptide or protein. The C-2H stretching bands of the phospholipid are sensitive to two different types of chain conformation. The C-2H stretching frequency provides information about the static order of the lipid chains, whilst the half-maximum bandwidth provides a measure of chain librational and torsional motion. From the measurements it is concluded that: (1) Above the lipid phase transition temperature tc, low concentrations of either gramicidin A or alamethicin cause a small decrease in lipid chain gauche isomers whilst bacteriorhodopsin in the lipid bilayer has no effect. At higher concentrations each intrinsic molecule causes an increase to occur in lipid chain gauche isomers. (2) The lipid acyl chain motion, as deduced from the bandwidths is increased by the presence of a low concentration of gramicidin A within the lipid bilayer. The presence of the other intrinsic molecules studied have little effect. A higher concentration of alamethicin causes a decrease in chain motion whilst gramicidin A and bacteriorhodopsin have no effect. (3) Below tc each of the intrinsic molecules when present in the lipid bilayer causes an increase in gauche isomers to occur as well as an increase in the lipid chain motion. A broadening of the lipid phase transition occurs as the concentration of the polypeptide increases.  相似文献   

17.
Molecules analogous to biological and synthetic lipids have been prepared with conjugated diacetylene moieties in the long alkyl chain. These lipid diacetylenes form bilayer structures when suspended in aqueous buffers. Ultraviolet light (254 nm) exposure initiates the polymerization of the diacetylenes in the lipid bilayer to give a fully conjugated, highly colored product. The reaction is topotactic, and its efficiency depends on the correct alignment of the monomeric units. Thus, the lipid diacetylenes are photopolymerizable if the hydrocarbon chains are in a regular lattice found at temperatures below the lipid transition temperature; polymerization is inhibited above this transition. The photopolymerization of a diacetylenic glycerophosphocholine in lipid bilayer membranes was observed in two-component mixtures with a nonpolymerizable lipid, either dioleoylphosphatidylcholine or distearoylphosphatidylcholine. The photochemical and thermochemical characteristics suggest that the diacetylenic glycerophosphocholine exists largely in separate domains in the mixed bilayers. Lipid diacetylenes analogous to a dialkyldimethylammonium salt and to a dialkyl phosphate have a plane of symmetry, which suggests that both chains penetrate equally into the bilayer. The photopolymerization of these symmetrical synthetic species is more than 103-times more efficient than that of the diacetylenic glycerophosphocholine. These differences are interpretable in terms of the expected conformational preference of the lipid molecules.  相似文献   

18.
Several membrane-transporting peptides (MTP) containing basic amino acid residues such as Lys and Arg that carry macromolecules such as DNA and proteins across cell plasma membranes by an unknown mechanism have been actively studied. On the basis of these results, we have been investigating the translocation ability of synthetic polypeptides, copoly(Lys/Phe) and poly(Lys), through negatively charged phospholipid (soybean phospholipid (SBPL)) bilayer membranes by zeta potential analysis, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, an electrophysiology technique, and confocal laser scanning microscopy (CLSM). The binding of these polypeptides to the membrane, which is the first step for translocation across the membrane, resulted in the conformational transition of the polypeptide from a random coil form or helix-poor form to a helix-rich form. The fluorescence studies demonstrated that the time-dependent decrease in the fluorescence intensities of the FITC-labeled polypeptides bound to the SBPL liposome reflected translocation of the polypeptide across the lipid bilayer with the low dielectric constant. Both the rate constant and the efficiency of the polypeptide translocation across the lipid bilayer were greater for copoly(Lys/Phe) than for poly(Lys). These results suggest that the random incorporation of the hydrophobic Phe residue into the positively charged Lys chain results in a lowering of the potential barrier for passage of the polypeptide in the hydrophobic core portion of the lipid bilayer. We presented the first direct observation that the positively charged polypeptides, copoly(Lys/Phe) (MW: 41,500) and poly(Lys) (MW: 23,400), could translocate across the lipid bilayer membrane.  相似文献   

19.
Several membrane-transporting peptides (MTP) containing basic amino acid residues such as Lys and Arg that carry macromolecules such as DNA and proteins across cell plasma membranes by an unknown mechanism have been actively studied. On the basis of these results, we have been investigating the translocation ability of synthetic polypeptides, copoly(Lys/Phe) and poly(Lys), through negatively charged phospholipid (soybean phospholipid (SBPL)) bilayer membranes by zeta potential analysis, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, an electrophysiology technique, and confocal laser scanning microscopy (CLSM). The binding of these polypeptides to the membrane, which is the first step for translocation across the membrane, resulted in the conformational transition of the polypeptide from a random coil form or helix-poor form to a helix-rich form. The fluorescence studies demonstrated that the time-dependent decrease in the fluorescence intensities of the FITC-labeled polypeptides bound to the SBPL liposome reflected translocation of the polypeptide across the lipid bilayer with the low dielectric constant. Both the rate constant and the efficiency of the polypeptide translocation across the lipid bilayer were greater for copoly(Lys/Phe) than for poly(Lys). These results suggest that the random incorporation of the hydrophobic Phe residue into the positively charged Lys chain results in a lowering of the potential barrier for passage of the polypeptide in the hydrophobic core portion of the lipid bilayer. We presented the first direct observation that the positively charged polypeptides, copoly(Lys/Phe) (MW: 41,500) and poly(Lys) (MW: 23,400), could translocate across the lipid bilayer membrane.  相似文献   

20.
A purified (Na+ + K+)-ATPase large subunit obtained from microsomes by water-alcohol extraction was incorporated into a bilayer lipid membrane. The protein formed in the membrane conductance channels which were sensitive to ouabain and selective for monovalent cations. ATP activated these channels in the presence of sodium and potassium ions. When sodium ions were eliminated ATP did not change the conductance of the modified membrane whereas p-nitrophenyl phosphate increased it. The (Na+ + K+)-ATPase large subunit incorporated into bilayer lipid membrane possessed an ATPase activity. The presence of a potential on the membrane was a necessary condition for the enzyme incorporated into a bilayer lipid membrane to show high ATPase activity. Increasing the potential above 100 mV resulted in the closing of conductance channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号