首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saruplase--a recombinant single-chain urokinase-type plasminogen activator was identified immunohistochemically in normal rat tissue after intravenous administration by means of a polyclonal antibody. For this purpose, rat tissues were fixed in various ways (liquid nitrogen, ethanol, formaldehyd solution). Saruplase could be detected by the PAP method, streptavidinbiotin system and indirect immunofluorescence in the kidney (proximal tubule), liver (hepatocytes, Kupffer cells) and spleen (reticular cells). Saruplase was not localized in the rat endothelium. It is discussed that the rat-specific receptors for urokinase-type plasminogen activator on endothelial cells cannot bind Saruplase due to the extreme species specificity.  相似文献   

2.
Single-chain urokinase-type plasminogen activator (scu-PA), a potential therapeutic reagent for thrombosis, is activated in plasma by plasmin. The activated enzyme is further digested by plasmin to generate low-molecular-weight urokinase (LMW-UK), which has no affinity for fibrin. To circumvent this dual effect of plasmin, we synthesized in Escherichia coli a variant of scu-PA, which is not converted to LMW-UK on treatment with plasmin. In another variant, the activation cleavage site was modified such that activation by plasmin was slowed down and that inactivation by thrombin was greatly diminished. The combination of these variants may be applicable as an effective thrombolytic reagent for clinical use.  相似文献   

3.
Thrombin converts single-chain urokinase-type plasminogen activator (scu-PA) to an inactive two-chain derivative (thrombin-derived tcu-PA) by hydrolysis of the Arg-156--Phe-157 peptide bond. In the present study, we show that inactive thrombin-derived tcu-PA (specific activity 1000 IU/mg) can be converted with plasmin to active two-chain urokinase-type plasminogen activator (specific activity 43,000 IU/mg) by hydrolysis of the Lys-158--Ile-159 peptide bond. This conversion follows Michaelis-Menten kinetics with a Michaelis constant Km of 37 microM and a catalytic rate constant k2 of 0.013 s-1. The catalytic efficiency (k2/Km) for the activation of thrombin-derived tcu-PA by plasmin is about 500-fold lower than that for the conversion of intact scu-PA to tcu-PA. tcu-PA, generated by plasmin treatment of thrombin-derived tcu-PA, has similar properties to tcu-PA obtained by digestion of intact scu-PA with plasmin (plasmin-derived tcu-PA); its plasminogen activating potential and fibrinolytic activity in an in vitro plasma clot lysis system appear to be unaltered. These observations confirm that the structure of the NH2-terminal region of the B chain of u-PA is an important determinant for its enzymatic activity, whereas that of the COOH-terminal region of the A chain is not.  相似文献   

4.
Single-chain urokinase-type plasminogen activator (scu-PA) may be obtained from conditioned cell culture media (natural scu-PA) or by expression of the cDNA encoding human scu-PA in Escherichia coli (recombinant scu-PA). The activation of Glu-plasminogen by natural and recombinant scu-PA can be described by a sequence of three reactions, each of which obeys Michaelis-Menten kinetics. Initial activation of plasminogen to plasmin by scu-PA (reaction I) occurs with a high affinity (Km below 0.8 microM) for both scu-PAs, while the catalytic rate constant (k2) is 0.017 s-1 for recombinant scu-PA but only 0.0009 s-1 for natural scu-PA. Subsequent conversion of scu-PA to urokinase (two-chain urokinase-type plasminogen activator, tcu-PA) by generated plasmin (reaction II) occurs with a comparable affinity (Km about 5 microM) for natural and recombinant scu-PA and with a k2 of 0.23 s-1 for natural and 1.2 s-1 for recombinant scu-PA. Finally, activation of plasminogen by tcu-PA (reaction III) occurs with low affinity (Km 30-50 microM) but with a high catalytic rate constant (k2 about 5 s-1) for both natural and recombinant tcu-PA. The differences in the kinetic parameters of the activation of plasminogen by natural or recombinant scu-PA are thus mainly due to differences in turnover rate in the first reaction. Indeed, the catalytic rate constant of the first reaction is about 20-times higher for recombinant scu-PA than for natural scu-PA. Thus, surprisingly, the artificial, unglycosylated recombinant scu-PA molecule has a better catalytic efficiency than its natural glycosylated counterpart.  相似文献   

5.
L A King  K Kaur  S G Mann  A M Lawrie  J Steven  J E Ogden 《Gene》1991,106(2):151-157
A cDNA encoding human urokinase-type plasminogen activator was inserted downstream from the polyhedrin promoter of the baculovirus Autographa californica nuclear polyhedrosis virus. A protein of similar Mr to urokinase (UK) was synthesized and approx. 90% was secreted from recombinant virus-infected Spodoptera frugiperda cells. Zymography and Western blotting analysis of the insect-derived protein demonstrated that it was comprised solely of the high-Mr form of UK. No low-Mr UK was detected. Amidolytic activity assays showed that 96% of the insect cell-derived UK was in the single-chain proenzyme form. The yield of UK from insect cells was 1986 international units/ml/10(6) infected cells.  相似文献   

6.
The interaction of urokinase-type plasminogen activators with receptors on the surface of endothelial cells may play an important role in the regulation of fibrinolysis and cell migration. Therefore, we investigated whether human umbilical vein endothelial cells (HUVEC) express receptors for single-chain urokinase (scu-PA) on the cell surface and examined the effect of such binding on plasminogen activator activity. Binding of 125I-labeled scu-PA to HUVEC, performed at 4 degrees C, was saturable, reversible, and specific (k+1 4 +/- 1 X 10(6) min-1 M-1, k-1 6.2 +/- 1.4 X 10(-3) min-1, Kd 2.8 +/- 0.1 nM; Bmax 2.2 +/- 0.1 X 10(5) sites/cell; mean +/- S.E.). Binding of radiolabeled scu-PA was inhibited by both natural and recombinant wild-type scu-PA, high molecular weight two-chain u-PA (tcu-PA), catalytic site-inactivated tcu-PA, an amino-terminal fragment of u-PA (amino acids 1-143), and a smaller peptide (amino acids 4-42) corresponding primarily to the epidermal growth factor-like domain. Binding was not inhibited by low molecular weight urokinase or by a recombinant scu-PA missing amino acids 9-45. Cell-bound scu-PA migrated at its native molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of plasminogen, scu-PA bound to endothelial cells generated greater plasmin activity than did scu-PA in the absence of cells. In contrast, when tcu-PA was added directly to HUVEC, sodium dodecyl sulfate-stable complexes formed with cell or matrix-associated plasminogen activator inhibitors with a loss of plasminogen activator activity. These studies suggest that endothelial cells in culture express high affinity binding sites for the epidermal growth factor domain of scu-PA. Interaction of scu-PA with these receptors may permit plasminogen activator activity to be expressed at discrete sites on the endothelial cell membrane.  相似文献   

7.
A urokinase-type plasminogen activator was purified from conditioned media of several human cell cultures, but preferably from the human lung adenocarcinoma line CALU-3 (ATCC, HTB-55), using a combination of chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, and Sephadex G-100. Final yields of 65-100 micrograms/liter of starting material were obtained with a 290-fold purification factor and a recovery of 30%. The purified plasminogen activator consists of a single polypeptide chain with Mr 54,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is very similar or identical to single-chain urokinase-type plasminogen activator on the basis of immunodiffusion, amino acid composition, and the lack of specific binding to fibrin. It has very low amidolytic activity on Pyroglu-Gly-Arg-rho-nitroanilide and is converted to two-chain urokinase by limited exposure to plasmin. It has a specific activity of 60,000 IU/mg on fibrin plates and directly activates plasminogen following Michaelis-Menten kinetics with Km = 1.1 microM and kappa cat = 0.0026 S-1. It is concluded that the plasminogen activator purified from CALU-3-conditioned media is physically and kinetically identical to single-chain urokinase-type plasminogen activator. With the present straightforward purification method and a readily available source, sufficient amounts of single-chain urokinase-type plasminogen activator can be obtained for more detailed investigations of its biochemical, biological, and thrombolytic properties.  相似文献   

8.
In recent years, classification of soft-tissue sarcomas (STS) has improved with cytogenetic analyses, but their clinical behavior is still not easily predictable. The aim of this study was to detect alterations in the urokinase-type plasminogen system, involved in tumor growth and invasion, by comparing mRNA levels of its components with those of paired normal tissues, and relating them with patient clinical course. Real-time PCR was performed on human STS cell lines and tissues from highly malignant STS, including leiomyosarcomas and malignant fibrous histiocytomas, to evaluate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of gene products was also performed. Median mRNA values of all genes studied were higher in tumors than in paired normal tissues. In agreement with data on STS cell lines, significant up-regulation for uPA and PAI-1 genes compared to reference values was seen. Moreover, different levels of expression were related to histotype and metastatic phenotype. There was accordance between uPA mRNA and protein expression, while immunodetection of PAI-1 product was weak and scattered. Clearly, the controversial role of PAI-1 protein requires further biological analyses, but evident involvement of uPA/PAI-1 gene overexpression in STS malignancy may highlight a molecular defect useful in discriminating STS high-risk patients.  相似文献   

9.
We studied the relationship between differentiation, transformation, and uPA production in a system of rat thyroid cells in vitro. The fully differentiated FRTL5 cells did not produce detectable amounts of uPA, even after stimulation with phorbol esters, potent inducers of uPA expression. All the other cell lines (i.e., FRT, cells which have lost the characteristics of the differentiated thyroid cells; 1-5 G and FRA, transformed cells derived from rat thyroid tumors) produced uPA, the 1-5 G line being the highest producer. Also the FRTL line became positive for uPA production after viral transformation (clone KM4). The lack of uPA expression in FRTL5 cells was not due to the presence of inhibitors and these cells did not produce an inactive molecule, as shown by immunoprecipitation with anti-uPA antibody. However, in FRTL5 cells Northern analysis showed the presence of a small amount of uPA-specific mRNA that increased appreciably after phorbol ester stimulation. In conclusion, in our system uPA expression was a property of undifferentiated and transformed cells; in fully differentiated cells uPA expression was switched off by a still unclear mechanism.  相似文献   

10.
Urokinase-type plasminogen activator (uPA) is a mosaic glycoprotein composed of an epidermal growth factor-like (EGF), a kringle and a serine protease (SP) module. It exists in single and two-chain forms designated HMW pro-uPA and HMW uPA, respectively. A low molecular weight form, LMW uPA, lacks the EGF and kringle modules and is composed of the SP module alone. Recombinant-expressed proteins representing both HMW forms exhibit four reversible unfolding transitions that are resolved by deconvolution of melting curves obtained by differential scanning calorimetry at pH 4.5; no differences in the melting properties of the single and two-chain forms were found. The proteolytic fragment Ser1-Lys135 (EGF-kringle) exhibits two transitions, while the isolated EGF and kringle modules each exhibit a single two-state transition. Thus, both of these modules retain an independently folded compact structure when isolated. The isolated SP module (LMW uPA) exhibits two closely spaced transitions at low pH indicating the melting of two domains of similar stability. Fluorescence-detected melting curves of LMW uPA reveal increasing cooperativity with increasing pH, suggesting an increase in the interaction between the two SP domains. Treatment of both HMW and LMW uPA with the tripeptide inhibitor Glu-Gly-Arg-chloromethylketone dramatically increased the stability of both domains of the SP module which now melt together in a single two-state transition, even at low pH, with no effect on the EGF and kringle modules. From these data one concludes that UK consists of four independently folded domains. Two are formed by the EGF and kringle modules which do not interact with each other or with the SP module. The SP module contains two domains that are independent at low pH but exhibit a tendency to merge into a single cooperative unit at neutral pH or after treatment with the tripeptide inhibitor.  相似文献   

11.
The cDNA encoding a low Mr derivative (residues 144-411) of human single-chain urokinase-type plasminogen activator was cloned, the recombinant low Mr single-chain urokinase-type plasminogen activator (rscu-PA-32k) was expressed in Chinese hamster ovary cells, and the translation product was purified to homogeneity from conditioned cell culture medium. rscu-PA-32k is very similar to intact recombinant single-chain urokinase-type plasminogen activator in terms of its very low activity (120 IU/mg) on a chromogenic substrate for urokinase (pyroglutamylglycylarginine p-nitroanilide), its plasminogen-dependent fibrinolytic activity on fibrin plates (specific activity = 170,000 IU/mg), its plasminogen activating potential, and the lack of specific binding to fibrin. In a rabbit jugular vein thrombosis model, comparable thrombolysis was obtained with rscu-PA-32k as compared to low molecular weight two-chain urokinase (50% lysis at 2.1 and 1.6 mg/kg infused over 4 h). Thrombolysis was associated with much less extensive systemic fibrinogen breakdown with rscu-PA-32k than with two-chain urokinase (residual fibrinogen at 50% lysis of 71 and 10%, respectively). It is concluded that the functional properties of rscu-PA-32k, expressed with a high efficiency, are similar to those of its previously characterized natural counterpart.  相似文献   

12.
Sun Z  Liu JN 《Proteins》2005,61(4):870-877
The charge of Lys300(c143) located within a flexible loop(297-313) of sc-uPA has been identified as an important determinant for its high intrinsic activity. Mutations affecting the flexibility of the loop also modulate the intrinsic activity. Glu-plasminogen activation by sc-uPA is strongly promoted by fibrin fragment E but not fibrin fragment D-dimer, whereas plasminogen activation by t-PA is strongly promoted by fragment D-dimer but not fragment E. To further investigate the effect of conformation changes in the flexible loop on catalytic properties of sc-uPA, cassette mutations at Pro309(c152) were made and characterized. It was found that the activation of Pro309(c152) mutants by Lys-plasmin was only moderately affected. In contrast, the intrinsic and two-chain activities of Pro309(c152) mutants against S2444 were both significantly decreased. The two-chain activities of these mutants against Glu-plasminogen were also reduced in a range of 1.1- to 127-fold. The mutations of Pro309(c152) to Trp/Phe and Arg/Asp more significantly affected both intrinsic and two-chain activities, while only a moderate decrease in activity was found with mutations to Ala/Ser/Thr. In contrast to wild-type sc-uPA, plasminogen activation by Pro309(c152) mutants was found to be promoted by both fibrin fragment E and D-dimer. In the presence of 2.0 microM D-dimer, plasminogen activation by mutant Pro309(c152) --> His was promoted by 22-fold, while only 2.0-fold promotion was found with mutant Pro309(c152) --> Gly. In conclusion, these findings demonstrated that conformation changes in the flexible loop of sc-uPA not only affect its intrinsic and two-chain activity, but also extend its promotion of plasminogen activation by fragment E to D-dimer.  相似文献   

13.
Single-chain urokinase-type plasminogen activator (scu-PA) is cleaved by thrombin, resulting in an inactive molecule called thrombin-cleaved two-chain urokinase-type plasminogen activator (tcu-PA/T). There is no knowledge about cell-mediated inactivation of scu-PA. We have studied whether scu-PA bound to cultured human umbilical vein endothelial cells (HUVEC) could be inactivated by thrombin. High molecular weight scu-PA was bound to HUVEC and incubated with increasing amounts of thrombin for 30 min at 37 degrees C. Cell-bound urokinase-type plasminogen activator (u-PA) was released and levels of scu-PA, tcu-PA/T and active two-chain u-PA were measured using sensitive bioimmunoassays. Cell-bound scu-PA was efficiently inactivated by thrombin. Fifty percent inactivation of scu-PA occurred at about 0.2 nM thrombin. In the presence of monoclonal anti-urokinase receptor IgG, at least 50% of the binding of scu-PA to HUVEC was inhibited. The relative amount of tcu-PA/T that was generated by thrombin was not affected by the monoclonal antibody. These results indicated that scu-PA bound to HUVEC via the urokinase receptor can be inactivated by thrombin. The efficient inactivation of cell-bound scu-PA suggests that a cofactor for thrombin may be involved, like thrombomodulin or glycosaminoglycans. It is concluded that scu-PA bound to the urokinase receptor on a cell surface can be inactivated by thrombin, which may have profound effects on u-PA-mediated local fibrinolysis and extracellular proteolysis during processes in which thrombin is also involved.  相似文献   

14.
J Schneider 《Prostaglandins》1991,41(6):595-606
Cooperative effects of the prostacyclin analogue taprostene and the thrombolytic agent saruplase (r-scu-PA) were studied in anesthetized rabbits with pulmonary thromboembolism. Thrombolysis was evaluated as decrease of the total weight and of the incorporated 125J-fibrin-radioactivity of the embolized thrombi. Saruplase (10.0-46.4 micrograms/kg.min, i.v.) produced dose-dependent lytic effects. Taprostene, infused in a dose (0.1 microgram/kg.min, i.v.) that inhibited ADP-induced decrease of circulating platelets by 56%, reduced the total thrombus weight (p less than 0.05 vs control) and in combination it further augmented the saruplase (21.5 micrograms/kg.min)-induced thrombolysis (p less than 0.05 vs saruplase alone). Taprostene did not increase the spontaneous lysis rate of the incorporated 125J-fibrin (7.3 +/- 1.4% vs 8.1 +/- 1.4%), but further enhanced the fibrinolytic effect of saruplase (37.2 +/- 5.6% saruplase vs 53.6 +/- 2.3% saruplase + taprostene; p less than 0.05). This overadditive synergism is tentatively ascribed to the platelet inhibition by the prostacyclin analogue that may facilitate the action of the thrombolytic agent. Taprostene lowered mean arterial blood pressure by 22% in anesthetized rabbits; it did not significantly modify the slight decrease of the plasma fibrinogen level (20-30%) by 21.5 micrograms/kg.min saruplase. The results show that the prostacyclin analogue taprostene reduces the total thrombus weight and enhances the efficacy of the thrombolytic agent saruplase in pulmonary thromboembolism in rabbits.  相似文献   

15.
The binding of urokinase-type plasminogen activators (u-PA) to receptors on various cell types has been proposed to be an important feature of many cellular processes requiring extracellular proteolysis. We have investigated the effect of single-chain u-PA binding to the monocyte-like cell line U937 on plasminogen activation. A 16-fold acceleration of the activation of plasminogen was observed at optimal concentrations of single-chain u-PA. This potentiation was abolished by the addition of either 6-aminohexanoic acid or the amino-terminal fragment of u-PA, thus demonstrating the requirement for specific binding of both single-chain u-PA and plasminogen to the cells. The mechanism of the enhancement of plasmin generation appears to be due primarily to an increase in the rate of feedback activation of single-chain u-PA to the more active two-chain u-PA by cell-bound plasmin, initially generated by single-chain u-PA. This increased activity of the plasminogen activation system in the presence of U937 cells provides a mechanism whereby u-PAs may exert their influence in a variety of cell-associated proteolytic events.  相似文献   

16.
A low Mr form (Mr 32,000) of single-chain urokinase-type plasminogen activator (scu-PA) was isolated from conditioned culture medium of a human lung adenocarcinoma cell line, CALU-3 (ATCC, HTB-55). The purified material (scu-PA-32k) consists of a single polypeptide chain and is immunologically similar to Mr 33,000 urokinase. Its NH2-terminal sequence is identical to that beginning at Leu-144 of Mr 54,000 urokinase. Whereas low Mr urokinase is derived from mature Mr 54,000 scu-PA by limited hydrolysis by plasmin first of the Lys-158-Ile-159 peptide bond and then of the Lys-136-Lys-137, scu-PA-32k is generated by specific hydrolysis of the Glu-143-Leu-144 peptide bond by an unidentified protease. scu-PA-32k resembles its Mr 54,000 scu-PA counterpart by its very low activity on chromogenic substrates for urokinase, by plasminogen-dependent fibrinolytic activity on fibrin plates, and by the lack of specific binding to fibrin. It activates plasminogen directly with high affinity, Km = 0.9 microM, but low turnover number, kcat = 0.0028 s-1. It is converted to fully active two-chain urokinase by plasmin with Km = 12 microM and kcat = 0.3 s-1. Like Mr 54,000 scu-PA, it causes significant lysis of a 125I-labeled fibrin clot in human plasma with relatively less fibrinogen breakdown as compared to urokinase. scu-PA-32k, which also has conserved fibrin specificity, represents a molecular variant which may be more suitable for large scale production as a fibrin-specific thrombolytic agent by recombinant DNA technology.  相似文献   

17.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

18.
The plasma clearance and the interaction of high (HMW) and low (LMW) molecular weight single-chain urokinase-type plasminogen activator (scu-PA) with rat liver cells was determined. 125I-Labeled HMW- and LMW-scu-PA were rapidly cleared from plasma with a half-life of 0.45 min and a maximal liver uptake of 55% of the injected dose. Liver uptake of scu-PA was mediated by parenchymal cells. Excess of unlabeled HMW-scu-PA reduced the liver uptake of 125I-HMW-scu-PA strongly. In vivo liver degradation of scu-PA was reduced by inhibitors of the lysosomal pathway. A high affinity binding site (Kd 45 nM, Bmax 1.7 pmol/mg cell protein) for both HMW- and LMW-scu-PA was determined on isolated parenchymal liver cells. Cross-competition binding studies showed that LMW- and HMW-scu-PA bind to the same site. Tissue-type plasminogen activator, mannose- or galactose-terminated glycoproteins did not affect the scu-PA binding to parenchymal liver cells. It is concluded that LMW- and HMW-scu-PA are taken up in the liver by a common, newly identified recognition site on parenchymal liver cells and are subsequently degraded in the lysosomes. It is suggested that this site is important for the regulation of the turnover of scu-PA.  相似文献   

19.
The role of glycosylation on the enzymatic properties of single chain urokinase-type plasminogen activator (scu-PA) was investigated by site-specific mutagenesis of the glycosylated Asn-302 residu to Gln. In addition, the role of the NH2-terminal polypeptide chain and of the Cys-148 to Cys-279 interchain disulphide bond on the activity of non-glycosylated scu-PA was investigated. Therefore, variants of recombinant scu-PA (rscu-PA) were produced by transfecting Chinese hamster ovary cells with cDNA encoding rscu-PA N302Q (rscu-PA with Asn-302 to Gln mutation), rscu-PA C279A,N302Q (rscu-PA with Cys-279 to Ala and Asn-302 to Gln mutations) or rscu-PA del(N2-F157)C279A,N302Q (rscu-PA C279A,N302Q with deletion of Asn-2 through Phe-157). These mutants were purified to homogeneity from conditioned cell culture medium and were obtained essentially as single chain molecules with specific activities on fibrin plates of (mean +/- S.E.; n = 6) 45,000 +/- 5000. IU/mg, 19,000 +/- 800 IU/mg and < or = 100 IU/mg for rscu-PA N302Q, rscu-PA C279A,N302Q and rscu-PA del(N2-F157)C279A,N302Q, respectively, as compared to 64,000 +/- 2600 IU/mg for wild-type rscu-PA obtained in the same expression system. Plasmin quantitatively converts rscu-PA N302Q and rscu-PA C279A,N302Q to amidolytically active two-chain derivatives with a specific activity of 56,000 IU/mg and 32,000 IU/mg, respectively, as compared to 75,000 IU/mg for wild-type rscu-PA. Plasminogen activation as a function of time was comparable for rscu-PA N302Q and wild-type rscu-PA, and somewhat slower for rscu-PA C279A,N302Q. In a human plasma milieu in vitro, consisting of a 125I-fibrin labeled plasma clot submerged in plasma, 50 percent clot lysis in 2 h required 2.2 micrograms/ml rscu-PA N302Q and 6.0 micrograms/ml rscu-PA C279A,N302Q, as compared to 3.2 micrograms/ml wild-type rscu-PA. In contrast, rscu-PA del(N2-F157)C279A,N302Q was not converted to an amidolytically active two chain derivative by plasmin, and did not induce significant plasminogen activation in purified systems or clot lysis in a human plasma milieu. Following bolus injections in hamsters, the initial half-lives (1.8-2.6 min) and the plasma clearances (0.6-1.5 ml min-1) were comparable for wild-type rscu-PA and for the three rscu-PA mutants. These results suggest that the fibrinolytic activity in a plasma milieu in vitro and the in vivo turnover of rscu-PA are not markedly affected by the absence of carbohydrate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The mechanism of the activation of plasminogen by single-chain urokinase-type plasminogen activator (single-chain u-PA, scu-PA) was studied using rscu-PA-Glu158, a recombinant plasmin-resistant mutant of human scu-PA obtained by site-specific mutagenesis of Lys158 to Glu, and rPlg-Ala740, a recombinant human plasminogen in which the catalytic site is destroyed by mutagenesis of the active-site Ser740 to Ala. Conversion of 125I-labeled single-chain plasminogen to two-chain plasmin was quantitated on reduced sodium dodecyl sulfate-gel electrophoresis combined with autoradiography and radioisotope counting of gels bands. The efficiencies of both rscu-PA-Glu158 and rscu-PA for the activation of rPlg-Ala740 and of natural plasminogen were comparable and were 250-500-fold lower than that of recombinant two-chain u-PA (rtcu-PA) for rscu-PA-Glu158 and 100-200-fold lower for rscu-PA. Pretreatment of rscu-PA-Glu158 or rscu-PA with excess alpha 2-antiplasmin, which efficiently neutralizes all contaminating rtcu-PA, did not significantly reduce the catalytic efficiency of these single-chain moieties, indicating that they have a low but significant intrinsic plasminogen activating potential. The low intrinsic catalytic efficiency of rscu-PA for the conversion of plasminogen to plasmin may be sufficient to generate trace amounts of plasmin, which may regulate plasminogen activation by converting poorly active rscu-PA to very active rtcu-PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号