首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Intact rat liver mitochondria have very low hydrolytic activity, if any, toward exogenous pyrophosphate. The activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or disrupting them with detergents or ultrasound, indicating that the active site of pyrophosphatase is located in the matrix. Initial rates of PPi hydrolysis by toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend in a similar manner on PPi and Mg2+ concentrations. The simplest model consistent with the data in both cases implies that the reaction proceeds through two pathways and requires MgPPi as the substrate and, at least, one Mg2+ ion as the activator. In the presence of 0.4 mM Mg2+ (physiological concentration), the inhibition constant for Ca2+ is 12 microM and the enzyme activity is, at least, 50% maximal. The results suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to that at equilibrium.  相似文献   

4.
5.
The thiamine pyrophosphatase (the enzyme [s] catalyzing the release of inorganic phosphate with thiamine pyrophosphate as the substrate) activities of Golgi apparatus-, plasma membrane-, endoplasmic reticulum-, and mitochondria-rich fractions from rat liver were compared at pH 8. Activity was concentrated in the Golgi apparatus fractions, which, on a protein basis, had a specific activity six to eight times that of the total homogenates or purified endoplasmic reticulum fractions. However, only 1–3% of the total activity was recovered in the Golgi apparatus fractions under conditions where 30–50% of the UDPgalactose:N-acetylglucosamine-galactosyl transferase activity was recovered. Considering both recovery of galactosyl transferase and fraction purity, we estimate that approximately 10% of the total thiamine pyrophosphatase activity of the liver was localized within the Golgi apparatus, with a specific activity of about ten times that of the total homogenate. Cytochemically, reaction product was found in the cisternae of the endoplasmic reticulum as well as in the Golgi apparatus. This is in contrast to results obtained in most other tissues, where reaction product was restricted to the Golgi apparatus. Thus, enzymes of rat liver catalyzing the hydrolysis of thiamine pyrophosphate, although concentrated in the Golgi apparatus, are widely distributed among other cell components in this tissue.  相似文献   

6.
7.
Intact rat liver mitochondria possess a very low hydrolytic activity, if any, towards exogenous pyrophosphate. This activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or by disrupting them with detergents or ultrasound, thus indicating that the active site of pyrophosphatase is localized in the matrix. The initial rates of PPi hydrolysis of toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend, in a similar manner, on PPi and Mg2+ concentrations. The simplest model consistent with these data in both cases implies that the reaction proceeds via two pathways and requires MgPPi as substrate and at least one Mg2+ ion as activator. In the presence of 0.4 mM Mg2+ (physiological concentration) the inhibition constant for Ca2+ is 12 microM and the enzyme activity is no less than 50% of the maximal one. The data obtained suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to the equilibrium one.  相似文献   

8.
Nucleosidediphosphatase (nucleosidediphosphate phosphohydrolase, EC 3.6.1.6) of rat liver cytosol was purified up to 336--fold by the procedure including affinity chromatographies of concanavalin A- and alanine-Sepharose. The final purified enzyme showed a single protein band upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Its native form was found to be a tetramer with molecular weight of 120 000 which consists of subunit with molecular weight of 30 000. The enzyme was found to be a glycoprotein on the basis of its chromatographic behaviour with concanavalin A-Sepharose and positive staining with periodate-Schiff reaction in polyacrylamide gels. Furthermore, the two molecular forms with isoelectric points of 4.7 and 5.0 were demonstrated by electrofocusing, though they did not show any significant difference with respect to their catalytic properties.  相似文献   

9.
An anionic glutathione S-transferase representing approximately 20% of the total glutathione S-transferase protein and 10% of the total transferase activity toward 1-chloro 2,4-dinitrobenzene has been purified to homogeneity from the 105,000 x g supernatant of rat liver homogenate. The SDS gel electrophoretic data on subunit composition revealed that the anionic isozyme is composed of two subunits with an identical Mr of 26,000. The Km values for 1-chloro 2,4-dinitrobenzene and reduced glutathione were determined to be 0.94 mM and 0.23 mM respectively. A significant amount of glutathione peroxidase activity toward cumene hydroperoxide is associated with the new isozyme.  相似文献   

10.
Metabolite levels and carbohydrates were investigated in the leaves of tobacco (Nicotiana tabacum L.) and leaves and tubers of potato (Solanum tuberosum L.) plants which had been transformed with pyrophosphatase from Escherichia coli. In tobacco the leaves contained two- to threefold less pyrophosphate than controls and showed a large increase in UDP-glucose, relative to hexose phosphate. There was a large accumulation of sucrose, hexoses and starch, but the soluble sugars increased more than starch. Growth of the stem and roots was inhibited and starch, sucrose and hexoses accumulated. In potato, the leaves contained two- to threefold less pyrophosphate and an increased UDP-glucose/ hexose-phosphate ratio. Sucrose increased and starch decreased. The plants produced a larger number of smaller tubers which contained more sucrose and less starch. The tubers contained threefold higher UDP-glucose, threefold lower hexose-phosphates, glycerate-3-phosphate and phosphoenolpyruvate, and up to sixfold more fructose-2,6-bisphosphatase than the wild-type tubers. It is concluded that removal of pyrophosphate from the cytosol inhibits plant growth. It is discussed how these results provide evidence that sucrose mobilisation via sucrose synthase provides one key site at which pyrophosphate is needed for plant growth, but is certainly not the only site at which pyrophosphate plays a crucial role.Abbreviations Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose 6-phosphate - FW fresh weight - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP phosphoenolpyruvate - 3PGA glycerate-3-phosphate - PFK phosphofructokinase - PFP pyrophosphate: fructose-6-phosphate phosphotransferase - Pi inorganic phosphate - PPi inorganic pyrophosphate - UDPGlc UDP-glucose This research was supported by the Deutsche Forschungsgemein-Schaft (SFB 137) and Sandoz AG (T.J., M.H., M.S.) and by the Bundesminister für Forschung und Technologie (U.S., L.W.).  相似文献   

11.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

12.
The Z protein fraction of rat liver cytosol contains one or more proteins which have been associated with organic anion transport, fatty acid metabolism, and aminoazodye binding. To study the possible identity of these proteins and investigate their function, Z was purified using ammonium sulfate fractionation, gel filtration, and preparative isoelectric focusing. Three protein fractions were obtained (pI 5.2, 6.0, 7.3) which reacted specifically with anti-Z IgG. These three fractions were homogenous as determined by several electrophoretic systems. Monospecific antibody prepared against two of the proteins cross-reacted specifically with all three. Each fraction bound BSP with different affinity; acidic Z bound the least BSP. The molecular weight of each fraction was 12,500 as determined by SDS-gel electrophoresis. Amino acid analyses of the three Z protein bands were virtually identical. Heterogeneity in Z probably results from interaction of the protein with ampholytes or exogenous ligands.  相似文献   

13.
Gel filtration of soluble supernatant fraction obtained from livers of rats 10 min after an injection of the haem precursor 5-amino[3H]laevulinic acid shows the presence of a major radioactive fraction which upon gel filtration is similar in elution volume to ligandin. 20 min after administration of the precursor four previously minor components also come into prominence. This pattern is a characteristic of in vivo binding since a different elution pattern is obtained if soluble supernatant fraction from rat liver is labelled in vitro by incubation either with [3H]haem-labelled mitochondria, [3H]haem-labelled microsomes or with [3H]haemin. These results are discussed with particular reference to ligandin.  相似文献   

14.
15.
16.
17.
Using an affinity matrix coupled with cholic acid, two proteins that recognise bile acids were isolated from rat liver cytosol. One protein of molecular weight 68 000 was immunologically identical to rat albumin. The other protein was of molecular weight 46 000. On discontinuous sodium dodecyl sulphate-polyacrylamide gel electrophoresis the 46 000 molecular weight protein dissociated to a single band with an RF value identical to the Yb subunit of the bromosulphophthalein-binding fraction (Y-fraction) of whole liver cytosol. The monomers of purified ligandin under these conditions resolved into two bands which corresponded to the Ya and Yc subunits of liver cytosol Y-fraction. Anti-serum to the purified ligandin reacted monospecifically with purified ligandin and whole liver cytosol, but did not cross-react with the Yb dimer eluted from the affinity column. The Yb dimer was shown to possess glutathione-S-transferase activity with a substrate specificity distinct from ligandin but similar to glutathione-S-transferase C. Cholic acid inhibited the catalytic activity of the transferase.  相似文献   

18.
1. The activity of dUTP pyrophosphatase (dUTPase) was similar in rat liver and hepatomas of slow or moderate growth rate but was increased several fold in three rapidly growing hepatomas. 2. There was an approx three-fold increase in the activity of uracil-DNA glycosylase in Morris hepatoma 7800 but there was little change in activity in other hepatomas that were examined. 3. The activities of dUTPase and uracil-DNA glycosylase were not significantly affected by two diets that may be promotional for hepatocarcinogenesis, a high orotate diet and an arginine-deficient diet.  相似文献   

19.
20.
Three forms of alpha-D-mannosidase have previously been identified in rat liver, and each is localized in a different subcellular fraction: lysosomes, Golgi membranes, and cytosol. This communication reports the purification and characterization the cytosolic form. The enzyme was purified 12,000-fold in good yield to approximately 90% purity with the aid of the competitive inhibitor mannosylamine and dithioerythritol as stabilizers. The molecular weight of the enzyme is in the range of 372,000 to 490,000 depending on the method used. Since the subunit molecular weight is 110,000 by sodium dodecyl sulfate polyacrylamide electrophoresis, the enzyme is probably a tetramer. The pH optimum was shown to be between 5.5 and 5.9 (in the presence of 1 mM CoCl2) with the substrate p-nitrophenyl-alpha-D-mannoside. Normal Michaelis-Menten kinetics were observed with a Km of 0.14 mM. Mannosylamine was a competitive inhibitor with a Ki of 0.007 mM. The purified enzyme, stabilized by Co2+, Mn2+, and Fe2+ under some conditions, was unstable at low protein concentrations. Since an electrophoresed sample showed a positive periodic acid-Schiff stain, the enzyme may contain carbohydrate. The availability of purified cytosolic alpha-D-mannosidase should now make it possible to carry out substrate specificity, immunological, and structural studies which may shed light on the biological role of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号