首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences among taxa in sexual size dimorphism of adults can be produced by changes in distinct developmental processes and thus may reflect different evolutionary histories. Here we examine whether divergence in sexual dimorphism of adults between recently established Montana and Alabama populations of the house finch (Carpodacus mexicanus) can be attributed to population differences in growth of males and females. In both populations, males and females were similar at hatching, but as a result of sex-specific growth attained sexual size dimorphism by the time of independence. Timing and extent of growth varied between the sexes: Females maintained maximum rates of growth for a longer time than males, whereas males had higher initial growth rates and achieved maximum growth earlier and at smaller sizes than females. Ontogeny of sexual dimorphism differed between populations, but in each population, sexual dimorphism in growth parameters and sexual dimorphism at the time of nest leaving were similar to sexual dimorphism of adults. Variation in growth of females contributed more to population divergence than did growth of males. In each population, we found close correspondence between patterns of sexual dimorphism in growth and population divergence in morphology of adults: Traits that were the most sexually dimorphic in growth in each population contributed the most to population divergence in both sexes. We suggest that sex-specific expression of phenotypic and genetic variation throughout the ontogeny of house finches can result in different responses to selection between males and females of the same age, and thus produce fast population divergence in the sexual size dimorphism.  相似文献   

2.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

3.
Abstract The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata . There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.  相似文献   

4.
Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae)   总被引:1,自引:0,他引:1  
Copris ochus (Coleoptera: Scarabaeidae), an endangered species, is the largest dung beetle in Japan. In C. ochus, males have a long head horn, while females lack this long horn (sexual dimorphism). Very large males of C. ochus have disproportionately longer head horns than small males, suggesting male horn dimorphism, although the dimorphism has not been investigated quantitatively. To clarify sexual and male horn dimorphism in C. ochus quantitatively, we examined the scaling relationship between body size (prothorax width) and head horn length in 94 females and 76 males. These beetles were captured during July 1978 from a natural population on Mt. Aso in southwestern Japan using a light trap. Although the horn length of the females and males scaled with prothorax width, the scaling relationship differed between the sexes, i.e., the relationship was linear in females and nonlinear in males. Statistical tests for dimorphism in male horn length showed a significant discontinuous relationship, thus indicating distinct sexual and male dimorphism in head horns. Long- and short-horned C. ochus males may have different reproductive behaviors, as described in other horned dung beetles.  相似文献   

5.
Sexual dimorphism in body size and leg length was investigated in a common orb-weaving spider of Ireland and northern Europe, Metellina segmentata (Clerck, 1757) (Araneae, Metidae). Univariate and multivariate analyses of sexual dimorphism revealed that a greater proportion of between sex variation (sexual dimorphism) was attributable to variation in shape than in size. Significant differences were found in the scores for males and females for the first two principal components. PCI (shape) accounted for 44.25% of the variation and PC2 (size) 13.01% of the variation. Although M. segmentata has been attributed with minimal sexual size dimorphism, females were markedly heavier, possibly a reflection of differential reproductive investment between the sexes, but males had markedly longer legs and broader prosoma. The results are discussed with regard to existing theories of natural and sexual selection, particularly those concerning sexual cannibalism and differential life history traits in males and females. Models that attempt to explain the evolution of sexual size dimorphism in spiders and of the web builders in particular, fail to account for the multivariate nature of dimorphism, especially with respect to shape.  相似文献   

6.
In many anurans, the forelimb muscles of males are used to grasp females and are often heavier than those of females despite the larger female body size. Such sexual dimorphism in forelimb musculature is thought to result from sexual selection. In addition, the hindlimbs of frogs and toads play an important role in the reproductive process as amplectant males can expel rivals with robust hindlimbs through kicking. In this study, the sexual dimorphism in dry mass for six hindlimb muscles of the Asiatic toad(Bufo gargarizans) was investigated. The results showed that, when controlled for body size, the hindlimb muscle mass of males significantly exceeded that of females for every muscle. The hindlimb muscle mass of amplectant males was also significantly larger than that of non-amplectant males. These results suggested that if strong hindlimb muscles could improve mating success of males, sexual selection would promote the evolution of dimorphism in this character.  相似文献   

7.
Theory predicts marked sexual dimorphism in terms of body size and body structures used as weapons (e.g. chelipeds) in gonochoric species with intense male sexual competition for receptive females and reduced or no sexual dimorphism in species where competition among males is trivial. We tested this hypothesis using a pair of closely‐related species of symbiotic porcelain crabs as a model. In one species that inhabits sea anemones solitarily, competition among males for receptive females is unimportant. In a second species that dwells as dense aggregations on sea urchins, male–male competition for sexual partners is recurrent. We expected considerable sexual dimorphism in body size and weaponry in the urchin‐dwelling crab and reduced sexual dimorphism in the anemone‐dwelling crab. In agreement with expectations, in the urchin‐dwelling crab, male body size was, on average, larger than that of females and males invested considerably more to cheliped length than females. Also supporting theoretical considerations, in the anemone‐dwelling crab, sexual dimorphism in terms of body size was not detected and differences between the sexes in investment to cheliped length were minor. Interestingly, chelipeds were more developed both in males and females of the anemone‐dwelling crab than in the urchin‐dwelling crab as a result of the importance of these structures for monopolization of their naturally scarce anemone hosts. Another difference between the studied species was the existence of two clearly distinguishable ontogenetic phases in males of the urchin‐dwelling crab but not in males of the anemone‐dwelling crab. Whether the two different male morphs display different male reproductive strategies in the urchin‐dwelling crab remains to be addressed. Other conditions that might additionally explain the observed differences in sexual dimorphism (e.g. female mate choice) between the studied species remain to be explored. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 548–558.  相似文献   

8.
Sexual size dimorphism might be influenced by environmental constraints on sexual selection or by intraspecific competition between males and females. We studied bobcats (Lynx rufus) in collections of museum specimens from western North America to examine these hypotheses. Structural body size was estimated from several measurements of the skull, ln-transformed and indexed through principal components analysis. Sexual dimorphism in body size was estimated from the difference in size index of males and females, and compared to geographic and climatic variables associated with biotic provinces (ecoregions). Of several climatic variables that were associated with bobcat body size, only seasonality of climate was associated with sexual dimorphism. Sexual size dimorphism, longitude, elevation, and seasonality were intercorrelated. As longitude decreased (moving inland from west-coastal ecoregions), sexual dimorphism decreased with the increased elevation and seasonality of continental climates of the Rocky Mountains. We suggest that increased seasonality and the need for fasting endurance by females may place constraints on the degree of sexual dimorphism in bobcats. Sexual dimorphism of body size and sexual size dimorphism of trophic structures (teeth) exhibited a strong positive association over geography, thus indirectly supporting the hypothesis that intrasexual competition for prey could account for the geographic variation in sexual size dimorphism. Thus, both environmental constraints on sexual selection of body size and intersexual competition were supported as possible explanations of the degree of sexual size dimorphism that occurs in populations of bobcats.  相似文献   

9.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

10.
Genetic variation among populations in the degree of sexual dimorphism may be a consequence of selection on one or both sexes. We analysed genetic parameters from crosses involving three populations of the dioecious plant Silene latifolia, which exhibits sexual dimorphism in flower size, to determine whether population differentiation was a result of selection on one or both sexes. We took the novel approach of comparing the ratio of population differentiation of a quantitative trait (Q(ST) ) to that of neutral genetic markers (F(ST) ) for males vs. females. We attributed 72.6% of calyx width variation in males to differences among populations vs. only 6.9% in females. The Q(ST) /F(ST) ratio was 4.2 for males vs. 0.4 for females, suggesting that selection on males is responsible for differentiation among populations in calyx width and its degree of sexual dimorphism. This selection may be indirect via genetic correlations with other morphological and physiological traits.  相似文献   

11.
Secondary sexual traits increase male fitness, but may be maladaptive in females, generating intralocus sexual conflict that is ameliorated through sexual dimorphism. Sexual selection on males may also lead some males to avoid expenditure on secondary sexual traits and achieve copulations using alternative reproductive tactics (ARTs). Secondary sexual traits can increase or decrease fitness in males, depending on which ART they employ, generating intralocus tactical conflict that can be ameliorated through male dimorphism. Due to the evolutionary forces acting against intralocus sexual and tactical conflicts, male dimorphism could coevolve with sexual dimorphism, a hypothesis that we tested by investigating these dimorphisms across 48 harvestman species. Using three independently derived phylogenies, we consistently found that the evolution of sexual dimorphism was correlated with that of male dimorphism, and suggest that the major force behind this relationship is the similarity between selection against intralocus sexual conflict and selection against intralocus tactical conflict. We also found that transitions in male dimorphism were more likely in the presence of sexual dimorphism, indicating that if a sexually selected trait arises on an autosome and is expressed in both sexes, its suppression in females probably evolves earlier than its suppression in small males that adopt ARTs.  相似文献   

12.
Geographic variation in sexual dimorphism of tooth size was assessed for the red fox Vulpes vulpes (Linnaeus, 1758) across the whole northern range of the species. Twenty-one measurements of tooth size and skull length were taken from 2849 specimens (1577 males and 1272 females) originating from 12 Nearctic and 25 Palearctic localities. The index of sexual dimorphism was calculated as a quotient of the mean measure of certain characters in males by the respective mean in females ( M m/ M f). In the whole range, the males were larger than females and mean dimorphism index of tooth size ranged from 1.01 to 1.06. On average, the tooth measurements in males were 3.6% larger than in females. The highest dimorphism was observed in the canines. Dimorphism of tooth size was higher in the Palearctic than Nearctic. Statistically significant differences between regions were found for lengths of C1, C1 and M1. In the Palearctic, higher values of the dimorphism indices were observed particularly in the southern parts of the Eurasian range of the red fox and in Great Britain. For a few metrical traits, sexual dimorphism indices presented significant relations to some geo-climatic variables. The geographic pattern of size dimorphism in the red fox seems to be shaped by sexual selection, intraspecific and interspecific competition and population density.  相似文献   

13.
Cusp dimensions of human maxillary molars were compared between males and females to determine whether the later-developed, distal cusps displayed greater sexual dimorphism than the earlier-developed, mesial cusps, and whether the later-forming second molar displayed greater sexual dimorphism than the first molar. First and second permanent molar crowns (M1 and M2) were measured indirectly, using dental casts obtained from 117 Japanese (65 males and 52 females). Measurements included maximum mesiodistal and buccolingual crown diameters and the diameters of the four main cusps: the paracone, protocone, metacone, and hypocone. Mean values of crown dimensions were larger in males than in females for both M1 and M2, but the sexual difference in protocone diameter of M1 was not significant. The protocone in M1 showed the least amount of sexual dimorphism, followed by the metacone, hypocone, and paracone, while in M2, the percentage sexual dimorphism corresponded to the order of cusp formation: paracone, protocone, metacone, and hypocone. With the exception of the paracone diameter, M2 showed greater sexual dimorphism than M1. Sexual dimorphism was not always greater in the later-developed, distal cusps of M1 or M2, but the protocone, the most important cusp in terms of occlusal function, displayed the least dimorphism in M1.  相似文献   

14.
European and Near Eastern Neanderthal postcranial remains have been analyzed to determine the degrees of sexual dimorphism in limb bone size and robusticity present among the Neanderthals. The remains were sexed on the basis of pelvic morphology where possible (seven males and three females) and otherwise on the basis of absolute size employing limb bone lengths and articular dimensions (12 males and 15 females). Neanderthal sexual size dimorphism, both within single site samples and in the total sexable sample, is virtually the same as that of recent human samples. Furthermore, despite a tendency towards more robust limbs, the Neanderthals exhibit sexual dimorphism in limb bone shaft and articular robusticity similar to that of recent human samples. By the time of the Neanderthals, sexual dimorphism in limb bone size and robusticity appears to have reached recent human proportions.  相似文献   

15.
The role of androgens on the sexual dimorphism of mandible shape was investigated in mice carrying the X-linked gene for testicular feminization (Tfm), which is known to determine a profound insensitivity to testosterone and is associated with a severe reduction in androgen receptor levels in Tfm/Y males. Mandible shape analysis in an inbred strain of mice segregating for the Ta (tabby) and Tfm mutations showed that the sexual dimorphism observed between +Ta/+Ta females and +Ta/Y males almost disappeared between Tfm+/+Ta females and Tfm+/Y males. In addition, a canonical discriminant analysis showed that these two closely related classes, Tfm+/+Ta and Tfm+/Y, are readily differentiated from both the +Ta/+Ta and +Ta/Y classes. These results suggest that androgens are involved in the mandible shape sexual dimorphism and play a role in mandibular development in both males and females.  相似文献   

16.
Schultz ([1949] Am. J. Phys. Anthropol. 7:401-424) presented a conundrum: among primates, sexual dimorphism of the pelvis is a developmental adjunct to dimorphism in other aspects of the body, albeit in the converse direction. Among species in which males are larger than females in body size, females are larger than males in some pelvic dimensions; species with little sexual dimorphism in nonpelvic size show little pelvic dimorphism. Obstetrical difficulty does not explain this relationship. The present study addresses this issue, evaluating the relationship between pelvic and femoral sexual dimorphism in 12 anthropoid species. The hypothesis is that species in which males are significantly larger than females in femoral size will have a higher incidence, magnitude, and variability of pelvic sexual dimorphism, with females having relatively larger pelves than males, compared with species monomorphic in femoral size. The results are consistent with the hypothesis. The proposed explanation is that the default pelvic anatomy in adulthood is that of the female; testosterone redirects growth from the default type to that of the male by differentially enhancing and repressing growth among the pelvic dimensions. Testosterone also influences sexual dimorphism of the femur. The magnitude of the pelvic response to testosterone is greater in species that are sexually dimorphic in the femur than in those that are monomorphic.  相似文献   

17.
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks.  相似文献   

18.
Abstract. Charadrii (shorebirds, gulls, and alcids) have an unusual diversity in their sexual size dimorphism, ranging from monomorphism to either male-biased or female-biased dimorphism. We use comparative analyses to investigate whether this variation relates to sexual selection through competition for mates or natural selection through different use of resources by males and females. As predicted by sexual selection theory, we found that in taxa with socially polygynous mating systems, males were relatively larger than females compared with less polygynous species. Furthermore, evolution toward socially polyandrous mating systems was correlated with decreases in relative male size. These patterns depend on the kinds of courtship displays performed by males. In taxa with acrobatic flight displays, males are relatively smaller than in taxa in which courtship involves simple flights or displays from the ground. This result remains significant when the relationship with mating system is controlled statistically, thereby explaining the enigma of why males are often smaller than females in socially monogamous species. We did not find evidence that evolutionary changes in sexual dimorphism relate to niche division on the breeding grounds. In particular, biparental species did not have greater dimorphism in bill lengths than uniparental species, contrary to the hypothesis that selection for ecological divergence on the breeding grounds has been important as a general explanation for patterns of bill dimorphism. Taken together, these results strongly suggest that sexual selection has had a major influence on sexual size dimorphism in Charadrii, whereas divergence in the use of feeding resources while breeding was not supported by our analyses.  相似文献   

19.
The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.  相似文献   

20.
Sexual differences in life history traits, such as size dimorphism, presumably arise via sexual selection and are most readily observed in adults. For complex life-cycle parasites, however, sexual selection may also have consequences for larval traits, e.g., growth in intermediate hosts. Two acanthocephalan species (Acanthocephalus lucii and Echinorhynchus borealis) were studied to determine, whether larval life histories differ between males and females. The size of female A. lucii cystacanths had a much stronger relationship with intermediate host size than males, suggesting females invest more in growth and are consequently more limited by resources. No relationship between host size and cystacanth size was observed for E. borealis. For both species, female cystacanths survived longer in a culture medium composed entirely of salts, which could suggest that females have greater energy reserves than males. A comparative analysis across acanthocephalan species indicated that sexual size dimorphism at the adult stage correlates with cystacanth dimorphism. However, the relationship was not isometric; cystacanths do not reach the same level of sexual dimorphism as adults, possibly due to resource constraints. Our results suggest that larval life histories diverge between males and females in some acanthocephalans, and this is seemingly a consequence of sexual selection acting on adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号