首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although the active site of group I introns is phylogenetically conserved, subclasses of introns have evolved different mechanisms of stabilizing the catalytic core. Large introns contain weakly conserved 'peripheral' domains that buttress the core through predicted interhelical contacts, while smaller introns use loop-helix interactions for stability. In all cases, specific and non-specific magnesium ion binding accompanies folding into the active structure. Whether similar RNA-RNA and RNA-magnesium ion contacts play related functional roles in different introns is not clear, particularly since it can be difficult to distinguish interactions directly involved in catalysis from those important for RNA folding. Using phosphorothioate interference with RNA activity and structure in the small (249 nt) group I intron from Anabaena, we used two independent assays to detect backbone phosphates important for catalysis and those involved in intron folding. Comparison of the interference sites identified in each assay shows that positions affecting catalysis cluster primarily in the conserved core of the intron, consistent with conservation of functionally important phosphates, many of which are magnesium ion binding sites, in diverse group I introns, including those from Azoarcus and Tetrahymena. However, unique sites of folding interference located outside the catalytic core imply that different group I introns, even within the same subclass, use distinct sets of tertiary interactions to stabilize the structure of the catalytic core.  相似文献   

3.
The ascomycetous fungus Cryptendoxyla hypophloia contains an insertion of 433 base pairs in the genes encoding nuclear small subunit ribosomal RNA. Secondary structure analyses of the insert reveal characteristics indicative of a Group I intron, including elements P, Q, R, and S; however, the sequences of these conserved regions deviate significantly from recognized consensus sequences for Group I introns. Principal-components analysis, based on 79 nucleotide positions from the conserved core sequences of 93 Group I introns, identified 17 introns similar to that of C. hypophloia. This grouping, which includes inserts from phylogenetically diverse organisms, cannot readily be classified in any previously recognized major group of Group I introns. We propose the creation of a new group, IE, to accommodate these sequences, and discuss the evolutionary relationships between group IE and other major groups of Group I introns. Received: 11 January 1998 / Accepted: 12 October 1998  相似文献   

4.
The length of the small subunit ribosomal DNA (SSU rDNA) differs significantly among individuals from natural populations of the ascomycetous lichen complex Cladonia chlorophaea. The sequence of the 3' region of the SSU rDNA from two individuals, chosen to represent the shortest and longest sequences, revealed multiple insertions within a region that otherwise aligned with a 520-nucleotide sequence of the SSU rDNA in Saccharomyces cerevisiae. The high degree of variability in SSU rDNA size can be accounted for by different numbers of insertions; one individual had two group I introns and the second had five introns, two of which were clearly related to introns at identical positions in the other individual. Yet, introns in different positions, whether within an individual or between individuals, were not similar in sequence. The distribution of introns at three of the positions is consistent with either intron loss or acquisition, and clearly indicates the dynamic variability in this region of the nuclear genome. All seven insertions, which ranged in size from 210 to 228 nucleotides, had the conserved sequence and secondary structural elements of group I introns. The variation in distribution and sequence of group I introns within a short highly conserved region of rDNA presents a unique opportunity for examining the molecular evolution and mobility of group I introns within a systematics framework.  相似文献   

5.
Li Z  Zhang Y 《Nucleic acids research》2005,33(7):2118-2128
The large number of currently available group I intron sequences in the public databases provides opportunity for studying this large family of structurally complex catalytic RNA by large-scale comparative sequence analysis. In this study, the detailed secondary structures of 211 group I introns in the IE subgroup were manually predicted. The secondary structure-favored alignments showed that IE introns contain 14 conserved stems. The P13 stem formed by long-range base-pairing between P2.1 and P9.1 is conserved among IE introns. Sequence variations in the conserved core divide IE introns into three distinct minor subgroups, namely IE1, IE2 and IE3. Co-variation of the peripheral structural motifs with core sequences supports that the peripheral elements function in assisting the core structure folding. Interestingly, host-specific structural motifs were found in IE2 introns inserted at S516 position. Competitive base-pairing is found to be conserved at the junctions of all long-range paired regions, suggesting a possible mechanism of establishing long-range base-pairing during large RNA folding. These findings extend our knowledge of IE introns, indicating that comparative analysis can be a very good complement for deepening our understanding of RNA structure and function in the genomic era.  相似文献   

6.
The discovery of group I introns in small subunit nuclear rDNA (nsrDNA) is becoming more common as the effort to generate phylogenies based upon nsrDNA sequences grows. In this paper we describe the discovery of the first two group I introns in the nsrDNA from the genus Acanthamoeba. The introns are in different locations in the genes, and have no significant primary sequence similarity to each other. They are identified as group I introns by the conserved P, Q, R and S sequences (1), and the ability to fit the sequences to a consensus secondary structure model for the group I introns (1, 2). Both introns are absent from the mature srRNA. A BLAST search (3) of nucleic acid sequences present in GenBank and EMBL revealed that the A. griffini intron was most similar to the nsrDNA group I intron of the green alga Dunaliella parva. A similar search found that the A. lenticulata intron was not similar to any of the other reported group I introns.  相似文献   

7.
Alignment of the 87 available sequences of group I self-splicing introns reveals numerous instances of covariation between distant sites. Some of these covariations cannot be ascribed to historical coincidences or the known secondary structure of group I introns, and are, therefore, best explained as reflecting tertiary contacts. With the help of stereochemical modelling, we have taken advantage of these novel interactions to derive a three-dimensional model of the conserved core of group I introns. Two noteworthy features of that model are its extreme compactness and the fact that all of the most evolutionarily conserved residues happen to converge around the two helices that constitute the substrate of the core ribozyme and the site that binds the guanosine cofactor necessary for self-splicing. Specific functional implications are discussed, both with regard to the way the substrate helices are recognized by the core and possible rearrangements of the introns during the self-splicing process. Concerning potential long-range interactions, emphasis is put on the possible recognition of two consecutive purines in the minor groove of a helix by a GAAA or related terminal loop.  相似文献   

8.
We have amplified the large subunit ribosomal DNA (LSUrDNA) of the 12 described Naegleria spp. and of 34 other Naegleria lineages that might be distinct species. Two strains yielded a product that is longer than 3 kb, which is the length of the LSUrDNA of all described Naegleria spp. Sequencing data revealed that the insert in one of these strains is a group I intron without an open reading frame (ORF), while the other strain contains two different group I introns, of which the second intron has an ORF of 175 amino acids. In the latter ORF there is a conserved His-Cys box, as in the homing endonucleases present in group I introns in the small subunit ribosomal DNA (SSUrDNA) of Naegleria spp. Although the group I introns in the LSUrDNA differ in sequence, they are more related to each other than they are to the group I introns in the SSUrDNA of Naegleria spp. The three group I introns in the LSUrDNA in Naegleria are at different locations and are probably acquired by horizontal transfer, contrary to the SSUrDNA group I introns in this genus which are of ancestral origin and are transmitted vertically.  相似文献   

9.
We describe the presence and characteristics of two self-splicing group I introns in the sole 23S rRNA gene of Coxiella burnetii. The two group I introns, Cbu.L1917 and Cbu.L1951, are inserted at sites 1917 and 1951 (Escherichia coli numbering), respectively, in the 23S rRNA gene of C. burnetii. Both introns were found to be self-splicing in vivo and in vitro even though the terminal nucleotide of Cbu.L1917 is adenine and not the canonical conserved guanine, termed OmegaG, found in Cbu.L1951 and all other group I introns described to date. Predicted secondary structures for both introns were constructed and revealed that Cbu.L1917 and Cbu.L1951 were group IB2 and group IA3 introns, respectively. We analyzed strains belonging to eight genomic groups of C. burnetii to determine sequence variation and the presence or absence of the elements and found both introns to be highly conserved (>/=99%) among them. Although phylogenetic analysis did not identify the specific identities of donors, it indicates that the introns were likely acquired independently; Cbu.L1917 was acquired from other bacteria like Thermotoga subterranea and Cbu.L1951 from lower eukaryotes like Acanthamoeba castellanii. We also confirmed the fragmented nature of mature 23S rRNA in C. burnetii due to the presence of an intervening sequence. The presence of three selfish elements in C. burnetii's 23S rRNA gene is very unusual for an obligate intracellular bacterium and suggests a recent shift to its current lifestyle from a previous niche with greater opportunities for lateral gene transfer.  相似文献   

10.
Summary The nucleotide sequences of viroids contain features believed to be essential for the splicing of group I introns. Common sequence elements include a 16-nucleotide consensus sequence and three pairs of short sequences arranged in the same sequential order in both types of RNAs. The calculated probability of finding sequences resembling the 16-nucleotide consensus sequence in random nucleotide chains showed that at low fidelity (up to 5 mismatched nucleotides), the number of such sequences in viroids, plant viral satellite RNAs, plant viral RNAs and one plant viral DNA, group I introns and flanking exons does not significantly differ from the number expected at random. As the degree of fidelity is increased, the number in both introns and viroids, but not in exons or the other plant pathogens examined, greatly exceeds that expected in random chains. These findings suggest that viroids may have evolved from group I introns and/or that processing of viroid oligomers to monomers may have structural requirements similar to those of group I introns. The nucleotide sequences of viroids do not show close homology with two conserved regions of group II introns, the 14-base pair consensus region and the 5 terminal segment. However, close homology does exist between the conserved sequence of the 3 terminal segment of group II introns and viroids thus suggesting a possible evolutionary or functional relationship.  相似文献   

11.
The overlapping ND4L and ND5 genes of Neurospora crassa mitochondria are interrupted by one and two intervening sequences, respectively, of about 1,490, 1,408 and 1,135 bp in length. All three intervening sequences are class I introns and as such have the potential to fold into the conserved secondary structure that has been proposed for the majority of fungal mitochondrial introns. They contain long open reading frames (ORFs; from 306 to 425 codons long) that are continuous and in frame with the upstream exon sequences. These ORFs contain the conserved decapeptide-encoding sequences that are characteristic of the ORFs present in most class I introns. Extensive homology exists among the ORFs encoded by the ND4L intron, ND5 intron 1, and the second intron of the N. crassa oli2 gene. Also, internal repeats of about 130 amino acid residues are present twice in each of these three ORFs, suggesting that a duplication event may have occurred in the formation of these ORFs. The ND4L intron shares extensive homology (at the levels of both primary and proposed secondary structures) with the self-splicing intervening sequence present in the Tetrahymena nuclear rRNA gene. This homology includes but is not limited to the core secondary structure, as peripheral structural elements are also conserved in the two introns.  相似文献   

12.
The nucleotide sequence of the small-subunit rRNA (18S rRNA) coding gene in the higher fungus Protomyces inouyei contains two group I introns. This is the first report of two group I introns in the 18S rRNA coding region. Based on the comparison of the two introns of Protomyces inouyei with those of the green alga Ankistrodesmus stipitatus, and the other two higher fungi Pneumocystis carinii and Ustilago maydis, the Protomyces introns are group I introns containing the highly conserved sequence elements P, Q, R, and S. Intron A of Protomyces inouyei is located in the same position as in Pneumocystis carinii while intron B shares the location with that in Ustilago maydis. The phylogenetic relationships strongly support horizontal transfer of these group I introns.Correspondence to: J. Sugiyama  相似文献   

13.
Twenty-two years after their discovery as ribozymes, the self-splicing group I introns are finally disclosing their architecture at the atomic level. The crystal structures of three group I introns solved at moderately high resolution (3.1-3.8A) reveal a remarkably conserved catalytic core bound to the metal ions required for activity. The structure of the core is stabilized by an intron-specific set of long-range interactions that involves peripheral elements. Group I intron structures thus provide much awaited and extremely valuable snapshots of how these ribozymes coordinate substrate binding and catalysis.  相似文献   

14.
More than 1000 group I introns have been identified in fungal rDNA. Little is known, however, of the splicing and secondary structure evolution of these ribozymes. Here, we use a combination of comparative and biochemical methods to address the evolution and splicing of a vertically inherited group I intron found at position 788 in the fungal small subunit (S) rRNA. The ancestral state of the S788 intron contains a highly conserved core and an extended P5 domain typical of IC1 introns. In contrast, the more derived introns have lost most of P5, and have an accelerated divergence rate within the core region with three functionally important substitutions that unambiguously separate them from the ancestral pool. Of 14 S788 group I introns that were tested for splicing, five, all of the ancestral type, were able to self-splice and produced intron RNA circles in vitro. The more derived S788 introns did not self-splice, and potentially rely on fungal-specific factors to facilitate splicing. In summary, we demonstrate one possible fate of vertically inherited group I introns, the loss of secondary structure elements, lessened selective constraints in the intron core, and ultimately, dependence on host-mediated splicing.  相似文献   

15.
Group I and group II introns are different catalytic self-splicing and mobile RNA elements that contribute to genome dynamics. In this study, we have analyzed their distribution and evolution in 29 sequenced genomes from the Bacillus cereus group of bacteria. Introns were of different structural classes and evolutionary origins, and a large number of nearly identical elements are shared between multiple strains of different sources, suggesting recent lateral transfers and/or that introns are under a strong selection pressure. Altogether, 73 group I introns were identified, inserted in essential genes from the chromosome or newly described prophages, including the first elements found within phages in bacterial plasmids. Notably, bacteriophages are an important source for spreading group I introns between strains. Furthermore, 77 group II introns were found within a diverse set of chromosomal and plasmidic genes. Unusual findings include elements located within conserved DNA metabolism and repair genes and one intron inserted within a novel retroelement. Group II introns are mainly disseminated via plasmids and can subsequently invade the host genome, in particular by coupling mobility with host cell replication. This study reveals a very high diversity and variability of mobile introns in B. cereus group strains.  相似文献   

16.
Myxomycetes (plasmodial slime molds) belonging to the order Physarales contain obligatory group I introns at positions 1949 and 2449 in their large subunit ribosomal RNA gene. Here, we report 36 group I introns from the Didymiaceae family (order Physarales) from 18 isolates representing three genera and seven species, and have reconstructed both host and intron phylogenies. The introns, named L1949 and L2449, were found in all isolates analyzed, consistent with an obligatory distribution in Didymiaceae. The introns fold at the RNA-level into typical group I ribozyme core structures that are relatively conserved, but contain large and highly variable extension sequences in peripheral domains without any detectable protein coding capacities. Furthermore, the L1949 and L2449 introns have probably become dependent on host factors for folding or activity. This assumption is based on that all introns tested for self-splicing in vitro failed to ligate the flanking exon regions. Phylogenies based on LSU rDNA and intron sequences are consistent with that the L1949 and L2449 introns follow a strict vertical inheritance within Didymiaceae. We suggest that the Didymiaceae L1949 and L2449 introns are well suited as high-resolution markers in genetic assessments at various taxonomic levels, from closely related strains of a single species to separating genera.  相似文献   

17.
18.
Group I introns are catalytic RNAs capable of orchestrating two sequential phosphotransesterification reactions that result in self-splicing. To understand how the group I intron active site facilitates catalysis, we have solved the structure of an active ribozyme derived from the orf142-I2 intron from phage Twort bound to a four-nucleotide product RNA at a resolution of 3.6 A. In addition to the three conserved domains characteristic of all group I introns, the Twort ribozyme has peripheral insertions characteristic of phage introns. These elements form a ring that completely envelops the active site, where a snug pocket for guanosine is formed by a series of stacked base triples. The structure of the active site reveals three potential binding sites for catalytic metals, and invokes a role for the 2' hydroxyl of the guanosine substrate in organization of the active site for catalysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号