首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying soil microbial responses to anthropogenically driven environmental changes is critically important as concerns intensify over the potential degradation of ecosystem function. We assessed the effects of elevated atmospheric CO2 on microbial carbon (C) and nitrogen (N) cycling in Mojave Desert soils using extracellular enzyme activities (EEAs), community‐level physiological profiles (CLPPs), and gross N transformation rates. Soils were collected from unvegetated interspaces between plants and under the dominant shrub (Larrea tridentata) during the 2004–2005 growing season, an above‐average rainfall year. Because most measured variables responded strongly to soil water availability, all significant effects of soil water content were used as covariates to remove potential confounding effects of water availability on microbial responses to experimental treatment effects of cover type, CO2, and sampling date. Microbial C and N activities were lower in interspace soils compared with soils under Larrea, and responses to date and CO2 treatments were cover specific. Over the growing season, EEAs involved in cellulose (cellobiohydrolase) and orthophosphate (alkaline phosphatase) degradation decreased under ambient CO2, but increased under elevated CO2. Microbial C use and substrate use diversity in CLPPs decreased over time, and elevated CO2 positively affected both. Elevated CO2 also altered microbial C use patterns, suggesting changes in the quantity and/or quality of soil C inputs. In contrast, microbial biomass N was higher in interspace soils than soils under Larrea, and was lower in soils exposed to elevated CO2. Gross rates of NH4+ transformations increased over the growing season, and late‐season NH4+ fluxes were negatively affected by elevated CO2. Gross NO3 fluxes decreased over time, with early season interspace soils positively affected by elevated CO2. General increases in microbial activities under elevated CO2 are likely attributable to greater microbial biomass in interspace soils, and to increased microbial turnover rates and/or metabolic levels rather than pool size in soils under Larrea. Because soil water content and plant cover type dominates microbial C and N responses to CO2, the ability of desert landscapes to mitigate or intensify the impacts of global change will ultimately depend on how changes in precipitation and increasing atmospheric CO2 shift the spatial distribution of Mojave Desert plant communities.  相似文献   

2.
森林土壤融化期异养呼吸和微生物碳变化特征   总被引:1,自引:0,他引:1  
采用室内土柱培养的方法,研究在不同湿度(55%和80%WFPS,土壤充水孔隙度)和不同氮素供给(NH_4Cl和KNO_3,4.5 g N/m~2)条件下,外源碳添加(葡萄糖,6.4 g C/m~2)对温带成熟阔叶红松混交林和次生白桦林土壤融化过程微生物呼吸和微生物碳的激发效应。结果表明:在整个融化培养期间,次生白桦林土壤对照CO_2累积排放量显著高于阔叶红松混交林土壤。随着土壤湿度的增加,次生白桦林土壤对照CO_2累积排放量和微生物代谢熵(q_(CO_2))显著降低,而阔叶红松混交林土壤两者显著地增加(P0.05)。两种林分土壤由葡萄糖(Glu)引起的CO_2累积排放量(9.61—13.49 g C/m~2)显著大于实验施加的葡萄糖含碳量(6.4g C/m~2),同时由Glu引起的土壤微生物碳增量为3.65—27.18 g C/m~2,而施加Glu对土壤DOC含量影响较小。因此,这种由施加Glu引起的额外碳释放可能来源于土壤固有有机碳分解。融化培养结束时,阔叶红松混交林土壤未施氮处理由Glu引起的CO_2累积排放量在两种湿度条件下均显著大于次生白桦林土壤(P0.001);随着湿度的增加,两种林分土壤Glu引起的CO_2累积排放量显著增大(P0.001)。单施KNO_3显著地增加两种湿度的次生白桦林土壤Glu引起的CO_2累积排放量(P0.01)。单施KNO_3显著地增加了两种湿度次生白桦林土壤Glu引起的微生物碳(P0.001),单施NH_4Cl显著地增加低湿度阔叶红松混交林土壤Glu引起的微生物碳(P0.001)。结合前期报道的未冻结实验结果,发现冻结过程显著地影响外源Glu对温带森林土壤微生物呼吸和微生物碳的刺激效应(P0.05),并且无论冻结与否,温带森林土壤微生物呼吸和微生物碳对外源Glu的响应均与植被类型、土壤湿度、外源氮供给及其形态存在显著的相关性。  相似文献   

3.
Changes in plant inputs under changing atmospheric CO2 can be expected to alter the size and/or functional characteristics of soil microbial communities which can determine whether soils are a C sink or source. Stable isotope probing was used to trace autotrophically fixed 13C into phospholipid fatty acid (PLFA) biomarkers in Mojave Desert soils planted with the desert shrub, Larrea tridentata. Seedlings were pulse‐labeled with 13CO2 under ambient and elevated CO2 in controlled environmental growth chambers. The label was chased into the soil by extracting soil PLFAs after labeling at Days 0, 2, 10, 24, and 49. Eighteen of 29 PLFAs identified showed 13C enrichment relative to nonlabeled control soils. Patterns of PLFA enrichment varied temporally and were similar for various PLFAs found within a microbial functional group. Enrichment of PLFA 13C generally occurred within the first 2 days in general and fungal biomarkers, followed by increasingly greater enrichment in bacterial biomarkers as the study progressed (Gram‐negative, Gram‐positive, actinobacteria). While treatment CO2 level did not affect total PLFA‐C concentrations, microbial functional group abundances and distribution responded to treatment CO2 level and these shifts persisted throughout the study. Specifically, ratios of bacterial‐to‐total PLFA‐C decreased and fungal‐to‐bacterial PLFA‐C increased under elevated CO2 compared with ambient conditions. Differences in the timing of 13C incorporation into lipid biomarkers coupled with changes in microbial functional groups indicate that microbial community characteristics in Mojave Desert soils have shifted in response to long‐term exposure to increased atmospheric CO2.  相似文献   

4.
A novel procedure was developed for direct quantitative isolation of microbial DNA from soil. This technique was used to evaluate microbial DNA pools in soils of contrasting types (chernozems and brown forest soils) under different anthropogenic loads. A strong correlation was found between microbial biomass and DNA contents in soils of different types (R2 = 0.799). The ratio of soil CO2 emission rate to the amount of extractable DNA in the soil was shown to reflect physiological state of the soil microbial community; this ratio can be used as an ecophysiological parameter similarly to the metabolic quotient qCO2.  相似文献   

5.
Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13C‐CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg?1 soil day?1 in the Ah horizon. The fixation rates were 2.8–8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%–3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram‐positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram‐positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.  相似文献   

6.
The impact of elevated CO2 on terrestrial ecosystem C balance, both in sign or magnitude, is not clear because the resulting alterations in C input, plant nutrient demand and water use efficiency often have contrasting impacts on microbial decomposition processes. One major source of uncertainty stems from the impact of elevated CO2 on N availability to plants and microbes. We examined the effects of atmospheric CO2 enrichment (ambient+370 μmol mol?1) on plant and microbial N acquisition in two different mesocosm experiments, using model plant species of annual grasses of Avena barbata and A. fatua, respectively. The A. barbata experiment was conducted in a N‐poor sandy loam and the A. fatua experiment was on a N‐rich clayey loam. Plant–microbial N partitioning was examined through determining the distribution of a 15N tracer. In the A. barbata experiment, 15N tracer was introduced to a field labeling experiment in the previous year so that 15N predominantly existed in nonextractable soil pools. In the A. fatua experiment, 15N was introduced in a mineral solution [(15NH4)2SO4 solution] during the growing season of A. fatua. Results of both N budget and 15N tracer analyses indicated that elevated CO2 increased plant N acquisition from the soil. In the A. barbata experiment, elevated CO2 increased plant biomass N by ca. 10% but there was no corresponding decrease in soil extractable N, suggesting that plants might have obtained N from the nonextractable organic N pool because of enhanced microbial activity. In the A. fatua experiment, however, the CO2‐led increase in plant biomass N was statistically equal to the reduction in soil extractable N. Although atmospheric CO2 enrichment enhanced microbial biomass C under A. barbata or microbial activity (respiration) under A. fatua, it had no significant effect on microbial biomass N in either experiment. Elevated CO2 increased the colonization of A. fatua roots by arbuscular mycorrhizal fungi, which coincided with the enhancement of plant competitiveness for soluble soil N. Together, these results suggest that elevated CO2 may tighten N cycling through facilitating plant N acquisition. However, it is unknown to what degree results from these short‐term microcosm experiments can be extrapolated to field conditions. Long‐term studies in less‐disturbed soils are needed to determine whether CO2‐enhancement of plant N acquisition can significantly relieve N limitation over plant growth in an elevated CO2 environment.  相似文献   

7.
The applicability of two methods (pyrolysis gas chromatography and acidification-wet oxidation) for determining14CO2 incorporation into soil microorganisms was investigated. Both methods were able to distinguish biologically incorporated14C from abiotically adsorbed14C, but to varying degrees, there being a larger carryover of abiotic14C into the organic fraction and a higher percentage of assimilated14C in the organic fraction with the wet oxidation method. Using14C assimilation as a measure, it was possible to determine microbial activities in soils of diverse properties under a variety of conditions, including polar soils under harsh environmental conditions. Both light and dark14CO2 fixation was measurable.14CO2 assimilation was not always proportional to the enumerable microorganisms. A new design for measurement of microbial activityin situ enabled measurement of total C influx (primary productivity) into soils with minimal perturbation to the natural soil ecosystem.  相似文献   

8.
The occurrence of heterotrophic CO2 fixation by soil microorganisms was tested in several mineral soils differing in pH and two artificial soils (a mixture of silica sand, alfalfa powder, and nutrient medium inoculated with a soil suspension). Soils were incubated at ambient (∼0.05 vol%) and elevated (∼5 vol%) CO2 concentrations under aerobic conditions for up to 21 days. CO2 fixation was detected using either a technique for determining the natural abundance of 13C or by measuring the distribution of labeled 14C-CO2 in soil and bacteria. The effects of elevated CO2 on microbial biomass (direct counts, chloroform fumigation extraction method), composition of microbial community (phospholipid fatty acids), microbial activity (respiration, dehydrogenase activity), and turnover rate were also measured. Heterotrophic CO2 fixation was proven in all soils under study, being higher in neutral soils. The main portion of the fixed CO2 (98–99%) was found in extracellular metabolites while only ∼1% CO2 was incorporated into microbial cells. High CO2 concentration always induced an increase in microbial activity, changes in the composition of the microbial community, and a decrease in microbial turnover. The results suggest that heterotrophic CO2 fixation could be a widespread process in soils.  相似文献   

9.
Soil organic matter (SOM) dynamics ultimately govern the ability of soil to provide long‐term C sequestration and the nutrients required for ecosystem productivity. Predicting belowground responses to elevated CO2 requires an integrated understanding of SOM transformations and the microbial activity that governs them. It remains unclear how the microorganisms upon which these transformations depend will function in an elevated CO2 world. This study examines SOM transformations and microbial metabolism in soils from the Duke Free Air Carbon Enrichment site in North Carolina, USA. We assessed microbial respiration and net nitrogen (N) mineralization in soils with and without elevated CO2 exposure during a 100‐day incubation. We also traced the depleted C isotopic signature of the supplemental CO2 into SOM and the soils' phospholipid fatty acids (PLFA), which serve as biomarkers for living cells. Cumulative net N mineralization in elevated CO2 soils was 50% that in control soils after a 100‐day incubation. Respiration was not altered with elevated CO2. C : N ratios of bulk SOM did not change with elevated CO2, but incubation data suggest that the C : N ratios of mineralized organic matter increased with elevated CO2. Values of SOM δ13C were depleted with elevated CO2 (?26.7±0.2 vs. ?30.2±0.3‰), reflecting the depleted signature of the supplemental CO2. We compared δ13C of individual PLFA with the δ13C of SOM to discern incorporation of the depleted C isotopic signature into soil microbial groups in elevated CO2 plots. PLFA i15:0, a15:0, and 10Met18:0 reflected significant incorporation of recently produced photosynthate, suggesting that the bacterial groups defined by these biomarkers are active metabolizers in elevated CO2 soils. At least one of these groups (actinomycetes, 10Met18:0) specializes in metabolizing less labile substrates. Because control plots did not receive an equivalent 13C tracer, we cannot determine from these data whether this group of organisms was stimulated by elevated CO2 compared with these organisms in control soils. Stimulation of this group, if it occurred in the elevated CO2 plot, would be consistent with a decline in the availability of mineralizable organic matter with elevated CO2, which incubation data suggest may be the case in these soils.  相似文献   

10.
Large amounts of terrestrial organic C and N reserves lie in salt-affected environments, and their dynamics are not well understood. This study was conducted to investigate how the contents and dynamics of ‘native’ organic C and N in sandy soils under different plant species found in a salt-affected ecosystem were related to salinity and pH. Increasing soil pH was associated with significant decreases in total soil organic C and C/N ratio; particulate (0.05–2 mm) organic C, N and C/N; and the C/N ratio in mineral-associated (<0.05 mm) fraction. In addition, mineral-associated organic C and N significantly increased with an increase in clay content of sandy soils. During 90-day incubation, total CO2-C production per unit of soil organic C was dependent on pH [CO2-C production (g kg−1 organic C) = 22.5 pH – 119, R 2 = 0.79]. Similarly, increased pH was associated with increased release of mineral N from soils during 10-day incubation. Soil microbial biomass C and N were also positively related to pH. Metabolic quotient increased with an increase in soil pH, suggesting that increasing alkalinity in the salt-affected soil favoured the survival of a bacterial-dominated microbial community with low assimilation efficiency of organic C. As a result, increased CO2-C and mineral N were produced in alkaline saline soils (pH up to 10.0). This pH-stimulated mineralization of organic C and N mainly occurred in particulate but not in mineral-associated organic matter fractions. Our findings imply that, in addition to decreased plant productivity and the litter input, pH-stimulated mineralization of organic matter would also be responsible for a decreased amount of organic matter in alkaline salt-affected sandy soils.  相似文献   

11.
It is uncertain whether elevated atmospheric CO2 will increase C storage in terrestrial ecosystems without concomitant increases in plant access to N. Elevated CO2 may alter microbial activities that regulate soil N availability by changing the amount or composition of organic substrates produced by roots. Our objective was to determine the potential for elevated CO2 to change N availability in an experimental plant-soil system by affecting the acquisition of root-derived C by soil microbes. We grew Populus tremuloides (trembling aspen) cuttings for 2 years under two levels of atmospheric CO2 (36.7 and 71.5 Pa) and at two levels of soil N (210 and 970 μg N g–1). Ambient and twice-ambient CO2 concentrations were applied using open-top chambers, and soil N availability was manipulated by mixing soils differing in organic N content. From June to October of the second growing season, we measured midday rates of soil respiration. In August, we pulse-labeled plants with 14CO2 and measured soil 14CO2 respiration and the 14C contents of plants, soils, and microorganisms after a 6-day chase period. In conjunction with the August radio-labeling and again in October, we used 15N pool dilution techniques to measure in situ rates of gross N mineralization, N immobilization by microbes, and plant N uptake. At both levels of soil N availability, elevated CO2 significantly increased whole-plant and root biomass, and marginally increased whole-plant N capital. Significant increases in soil respiration were closely linked to increases in root biomass under elevated CO2. CO2 enrichment had no significant effect on the allometric distribution of biomass or 14C among plant components, total 14C allocation belowground, or cumulative (6-day) 14CO2 soil respiration. Elevated CO2 significantly increased microbial 14C contents, indicating greater availability of microbial substrates derived from roots. The near doubling of microbial 14C contents at elevated CO2 was a relatively small quantitative change in the belowground C cycle of our experimental system, but represents an ecologically significant effect on the dynamics of microbial growth. Rates of plant N uptake during both 6-day periods in August and October were significantly greater at elevated CO2, and were closely related to fine-root biomass. Gross N mineralization was not affected by elevated CO2. Despite significantly greater rates of N immobilization under elevated CO2, standing pools of microbial N were not affected by elevated CO2, suggesting that N was cycling through microbes more rapidly. Our results contained elements of both positive and negative feedback hypotheses, and may be most relevant to young, aggrading ecosystems, where soil resources are not yet fully exploited by plant roots. If the turnover of microbial N increases, higher rates of N immobilization may not decrease N availability to plants under elevated CO2. Received: 12 February 1999 / Accepted: 2 March 2000  相似文献   

12.
Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0–10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long‐term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m?2 s?1, control: 2.34 ± 0.29 μmol m?2 s?1; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass‐specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long‐term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C‐rich calcareous temperate forest soils.  相似文献   

13.
Summary The microbial populations in PCB-contaminated electric power substation capacitor bank soil (TVA soil) and from another PCB-contaminated site (New England soil) were compared to determine their potential to degrade PCB. Known biphenyl operon genes were used as gene probes in colony hybridizations and in dot blots of DNA extracted from the soil to monitor the presence of PCB-degrading organisms in the soils. The microbial populations in the two soils differed in that the population in New England soil was enriched by the addition of 1000 p.p.m. 2-chlorobiphenyl (2-CB) whereas the population in the TVA capacitor bank soil was not affected. PCB degradative activity in the New England soil was indicated by a 50% PCB disappearance (gas chromatography), accumulation of chlorobenzoates (HPLC), and14CO2 evolution from14C-2CB. The PCB-degrading bacteria in the New England soil could be identified by their positive hybridization to thebph gene probes, their ability to produce the yellowmeta-cleavage product from 2,3-dihydroxybiphenyl (2,3-DHB), and the degradation of specific PCB congeners by individual isolates in resting cell assays. Although the TVA capacitor bank soil lacked effective PCB-degrading populations, addition of a PCB-degrading organism and 10 000 p.p.m. biphenyl resulted in a >50% reduction of PCB levels. Molecular characterization of soil microbial populations in laboratory scale treatments is expected to be valuable in the design of process monitoring and performance verification approaches for full scale bioremediation.  相似文献   

14.
The dynamics of microbial degradation of exogenous contaminants, n-hexadecane and its primary microbial oxidized metabolite, n-hexadecanoic (palmitic) acid, was studied for topsoils, under agricultural management and beech forest on the basis the changes in O2 uptake, CO2 evolution and its associated carbon isotopic signature, the respiratory quotient (RQ) and the priming effect (PE) of substrates. Soil microbial communities in agricultural soil responded to the n-hexadecane addition more rapidly compared to those of forest soil, with lag-periods of about 23 ± 10 and 68 ± 13 hours, respectively. Insignificant difference in the lag-period duration was detected for agricultural (tlag = 30 ± 13 h) and forest (tlag = 30 ± 14 h) soils treated with n-hexadecanoic (palmitic) acid. These results demonstrate that the soil microbiota has different metabolic activities for using n-hexadecane as a reductive hydrocarbon and n-hexadecanoic acid as a partly oxidized hydrocarbon. The corresponding δ13C of respired CO2 after the addition of the hydrocarbon contaminants to soils indicates a shift in microbial activity towards the consumption of exogenous substrates with a more complete degradation of n-hexadecane in the agricultural soil, for which some initial contents of hydrocarbons are inherent. It is supposed that the observed deviation of RQ from theoretically calculated value under microbial substrate mineralization is determined by difference in the time (Δti) of registration of CO2 production and O2 consumption. Positive priming effect (PE) of n-hexadecane and negative PE of n-hexadecanoic (palmitic) acid were detected in agricultural and forest soils. It is suggested that positive PE of n-hexadecane is conditioned by the induction of microbial enzymes that perform hydroxylation/oxygenation of stable SOM compounds mineralized by soil microbiota to CO2. The microbial metabolism coupled with oxidative decarboxylation of n-hexadecanoic acid is considered as one of the most probable causes of the revealed negative PE value.  相似文献   

15.
Pseudomonas fluorescens strains are used in agriculture as plant growth-promoting rhizobacteria (PGPR). Nontarget effects of released organisms should be analyzed prior to their large-scale use, and methods should be available to sensitively detect possible changes in the environments the organism is released to. According to ecological theory, microbial communities with a greater diversity should be less susceptible to disturbance by invading organisms. Based on this principle, we laid out a pot experiment with field-derived soils different in their microbial biomass and activity due to long-term management on similar parent geological material (loess). We investigated the survival of P. fluorescens CHA0 that carried a resistance toward rifampicine and the duration of potential changes of the soil microflora caused by the inoculation with the bacterium at the sowing date of spring wheat. Soil microbial biomass (C mic, N mic) basal soil respiration (BR), qCO2, dehydrogenase activity (DHA), bacterial plate counts, mycorrhiza root colonization, and community level substrate utilization were analyzed after 18 and 60 days. At the initial stage, soils were clearly different with respect to most of the parameters measured, and a time-dependent effect between the first and the second set point were attributable to wheat growth and the influence of roots. The effect of the inoculum was small and merely transient, though significant long-term changes were found in soils with a relatively low level of microbial biomass. Community level substrate utilization as an indicator of changes in microbial community structure was mainly changed by the growth of wheat, while other experimental factors were negligible. The sensitivity of the applied methods to distinguish the experimental soils was in decreasing order N mic, DHA, C mic, and qCO2. Besides the selective enumeration of P. fluorescens CHA0 rif+, which was only found in amended soils, methods to distinguish the inoculum effect were DHA, C mic, and the ratio of C mic to N mic. The sampling time was most sensitively indicated by N mic, DHA, C mic, and qCO2. Our data support the hypothesis—based on ecosystem theory—that a rich microflora is buffering changes due to invading species. In other words, a soil-derived bacterium was more effective in a relatively poor soil than in soils that are rich in microorganisms.  相似文献   

16.
A scrub‐oak woodland has maintained higher aboveground biomass accumulation after 11 years of atmospheric CO2 enrichment (ambient +350 μmol CO2 mol?1), despite the expectation of strong nitrogen (N) limitation at the site. We hypothesized that changes in plant available N and exploitation of deep sources of inorganic N in soils have sustained greater growth at elevated CO2. We employed a suite of assays performed in the sixth and 11th year of a CO2 enrichment experiment designed to assess soil N dynamics and N availability in the entire soil profile. In the 11th year, we found no differences in gross N flux, but significantly greater microbial respiration (P≤0.01) at elevated CO2. Elevated CO2 lowered extractable inorganic N concentrations (P=0.096) considering the whole soil profile (0–190 cm). Conversely, potential net N mineralization, although not significant in considering the entire profile (P=0.460), tended to be greater at elevated CO2. Ion‐exchange resins placed in the soil profile for approximately 1 year revealed that potential N availability at the water table was almost 3 × greater than found elsewhere in the profile, and we found direct evidence using a 15N tracer study that plants took up N from the water table. Increased microbial respiration and shorter mean residence times of inorganic N at shallower depths suggests that enhanced SOM decomposition may promote a sustained supply of inorganic N at elevated CO2. Deep soil N availability at the water table is considerable, and provides a readily available source of N for plant uptake. Increased plant growth at elevated CO2 in this ecosystem may be sustained through greater inorganic N supply from shallow soils and N uptake from deep soil.  相似文献   

17.
Field studies of atmospheric CO2 effects on ecosystems usually include few levels of CO2 and a single soil type, making it difficult to ascertain the shape of responses to increasing CO2 or to generalize across soil types. The Lysimeter CO2 Gradient (LYCOG) chambers were constructed to maintain a linear gradient of atmospheric CO2 (~250 to 500 μl l−1) on grassland vegetation established on intact soil monoliths from three soil series. The chambers maintained a linear daytime CO2 gradient from 263 μl l−1 at the subambient end of the gradient to 502 μl l−1 at the superambient end, as well as a linear nighttime CO2 gradient. Temperature variation within the chambers affected aboveground biomass and evapotranspiration, but the effects of temperature were small compared to the expected effects of CO2. Aboveground biomass on Austin soils was 40% less than on Bastrop and Houston soils. Biomass differences between soils resulted from variation in biomass of Sorghastrum nutans, Bouteloua curtipendula, Schizachyrium scoparium (C4 grasses), and Solidago canadensis (C3 forb), suggesting the CO2 sensitivity of these species may differ among soils. Evapotranspiration did not differ among the soils, but the CO2 sensitivity of leaf-level photosynthesis and water use efficiency in S. canadensis was greater on Houston and Bastrop than on Austin soils, whereas the CO2 sensitivity of soil CO2 efflux was greater on Bastrop soils than on Austin or Houston soils. The effects of soil type on CO2 sensitivity may be smaller for some processes that are tightly coupled to microclimate. LYCOG is useful for discerning the effects of soil type on the CO2 sensitivity of ecosystem function in grasslands. Author Contributions: PF conceived study, analyzed data, and wrote the paper. AK, AP analyzed data. DH, VJ, RJ, HJ, and WP conceived study, and conducted research.  相似文献   

18.
Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low-or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.  相似文献   

19.
Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low-or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.  相似文献   

20.
Influence of maize root mucilage on soil aggregate stability   总被引:9,自引:0,他引:9  
This study was undertaken to determine the effects of root exudates on soil aggregate stability. Root mucilage was collected from two-month old maize plants (Zea mays L.) Mucilage and glucose solutions were added at a rate of 2.45 g C kg−1 dry soil to silty clay and silt loam soils. Amended soils, placed in serum flasks, were incubated for 42 d with a drying-wetting cycle after 21 d. Evolved CO2 was measured periodically as well as the water-stable aggregates and soluble sugar and polysaccharide content of the soil. In mucilage-amended soils CO2 evolution started with a lag phase of 2–3 days, which was not observed in glucose-amended soils. There was then a sharp increase in evolved CO2 up to day 7. During the second incubation period there were only small differences in evolved C between treatments. Incorporation of mucilage in both soils resulted in a spectacular and immediate increase in soil aggregate stability. Thereafter, the percent of water-stable aggregates quickly decreased parallel to microbial degradation. On completion of the incubation, aggregate stability in the silty clay soil was still significantly higher in the presence of mucilage than in the control. This work supports the assumption that freshly released mucilage is able to stick very rapidly to soil particles and may protect the newly formed aggregates against water destruction. On the silty clay, microbial activity contributes to a stabilization of these established organo-mineral bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号