首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sulfite resistance gene, SSU1-R, is widely distributed in wine yeasts. This gene has an upstream region distinct from that of the allelic gene, SSU1 and SSU1-R is expressed at a much higher level than SSU1. We characterized the promoters of both of these genes by analysis of their activity using the LacZ gene as a reporter. FZF1, the activator gene of SSU1, was shown to regulate SSU1-R expression indirectly. SSU1-R expression was activated under microaerobic conditions, and four 76-bp repeats, present within the SSU1-R promoter region, was essential for high expression. These results indicate that SSU1-R expression is regulated in different manner from that of SSU1. By deletion analysis of the SSU1-R promoter region, we found that at least two of the 76-bp repeats are necessary for promoter activity, and that the number of 76-bp repeats influences the activity. Hence, it was suggested that the number of 76-bp repeats increases in wine yeasts that require strong sulfite resistance.  相似文献   

2.
3.
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall.  相似文献   

4.
Ribonucleotide reductase (RNR) of the yeast Saccharomyces cerevisiae is a tetrameric protein complex, consisting of two large and two small subunits. The small subunits Y2 and Y4 form a heterodimer and are encoded by yeast genes RNR2 and RNR4, respectively. Loss of Y4 in yeast mutant rnr4Delta can be compensated for by up-regulated expression of Y2, and the formation of a small subunit Y2Y2 homodimer that allows for a partially functional RNR. However, rnr4Delta mutants exhibit slower growth than wild-type (WT) cells and are sensitive to many mutagens, amongst them UVC and photo-activated mono- and bi-functional psoralens. Cells of the haploid rnr4Delta mutant also show a 3- to 4-fold higher sensitivity to the oxidative stress-inducing chemical stannous chloride than those of the isogenic WT. Both strains acquired increased resistance to SnCl2 with age of culture, i.e., 24-h cultures were more sensitive than cells grown for 2, 3, 4, and 5 days in liquid culture. However, the sensitivity factor of three to four (WT/mutant) did not change significantly. Cultures of the rnr4Delta mutant in stationary phase of growth always showed higher frequency of budding cells (budding index around 0.5) than those of the corresponding WT (budding index <0.1), pointing to a delay of mitosis/cytokinesis.  相似文献   

5.
6.
7.
8.
9.
An X  Zhang Z  Yang K  Huang M 《Genetics》2006,173(1):63-73
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis and is essential in DNA replication and repair. Cells have evolved complex mechanisms to modulate RNR activity during normal cell cycle progression and in response to genotoxic stress. A recently characterized mode of RNR regulation is DNA damage-induced RNR subunit redistribution. The RNR holoenzyme consists of a large subunit, R1, and a small subunit, R2. The Saccharomyces cerevisiae R2 is an Rnr2:Rnr4 heterodimer. Rnr2 generates a diferric-tyrosyl radical cofactor required for catalysis; Rnr4 facilitates cofactor assembly and stabilizes the resulting holo-heterodimer. Upon DNA damage, Rnr2 and Rnr4 undergo checkpoint-dependent, nucleus-to-cytoplasm redistribution, resulting in colocalization of R1 and R2. Here we present evidence that Rnr2 and Rnr4 are transported between the nucleus and the cytoplasm as one protein complex. Tagging either Rnr2 or Rnr4 with a nuclear export sequence causes cytoplasmic localization of both proteins. Moreover, mutations at the Rnr2:Rnr4 heterodimer interface can affect the localization of both proteins without disrupting the heterodimeric complex. Finally, the relocalization of Rnr4 appears to involve both active export and blockage of nuclear import. Our findings provide new insights into the mechanism of DNA damage-induced RNR subunit redistribution.  相似文献   

10.
11.
Yeast cells permeabilized by freeze-thaw cycles in a sorbitol-containing medium provide an experimentally favorable system for the study of ribonucleotide reduction in a small number of cells or in mutant strains. Ribonucleotide reductase activities determined in such cells are about twice those found in cell extracts but properties of the enzyme, except pH optimum, are closely comparable in both assay procedures. In contrast with other organisms, the activities measured in permeabilized cells from both diploid or haploid strains exceed the demand for deoxyribonucleotide formation during replication of the yeast genome. The method has been applied to yeast cultures growing in the presence of the ribonucleotide reductase inhibitor hydroxyurea and a twofold increase of enzyme activity has been established in such cells. On the other hand, analysis of a series of hus mutants, selected for hydroxyurea sensitivity in the laboratory of Singer and Johnston did not reveal obvious alterations of the enzyme vs the parental strains, suggesting that the hus phenotype may be due to lesions other than in ribonucleotide reductase.  相似文献   

12.
13.
The class I ribonucleotide reductases (RNRs) are composed of two homodimeric subunits: R1 and R2. R2 houses a diferric-tyrosyl radical (Y*) cofactor. Saccharomyces cerevisiae has two R2s: Y2 (beta2) and Y4 (beta'2). Y4 is an unusual R2 because three residues required for iron binding have been mutated. While the heterodimer (betabeta') is thought to be the active form, several rnr4delta strains are viable. To resolve this paradox, N-terminally epitope-tagged beta and beta' were expressed in E. coli or integrated into the yeast genome. In vitro exchange studies reveal that when apo-(His6)-beta2 ((His)beta2) is mixed with beta'2, apo-(His)betabeta' forms quantitatively within 2 min. In contrast, holo-betabeta' fails to exchange with apo-(His)beta2 to form holo-(His)betabeta and beta'2. Isolation of genomically encoded tagged beta or beta' from yeast extracts gave a 1:1 complex of beta and beta', suggesting that betabeta' is the active form. The catalytic activity, protein concentrations, and Y* content of the rnr4delta and wild type (wt) strains were compared to clarify the role of beta' in vivo. The Y* content of rnr4delta is 15-fold less than that of wt, consistent with the observed low activity of rnr4delta extracts (<0.01 nmol min(-1) mg(-1)) versus wt (0.06 +/- 0.01 nmol min(-1) mg(-1)). (FLAG)beta2 isolated from the rnr4delta strain has a specific activity of 2 nmol min(-1) mg(-1), similar to that of reconstituted apo-(His)beta2 (10 nmol min(-1) mg(-1)), but significantly less than holo-(His)betabeta' (approximately 2000 nmol min(-1) mg(-1)). These studies together demonstrate that beta' plays a crucial role in cluster assembly in vitro and in vivo and that the active form of the yeast R2 is betabeta'.  相似文献   

14.
15.
Ribonucleotide reductase, the central enzyme of DNA precursor biosynthesis, has been isolated and characterized from baker's yeast. The enzyme activity, measured in extracts from three different, exponentially growing yeast strains, is high enough to meet the substrate requirement of DNA replication, in contrast to very low activities found in most other organisms. In thymidylate-permeable yeast cells ribonucleotide reductase activity is stimulated under both starvation and excess of intracellular dTMP. On the other hand growth of yeast in presence of 20 mM hydroxyurea did not increase enzyme activity. Yeast ribonucleotide reductase is composed of two non-identical subunits, inactive separately, of which one binds to immobilized dATP. The relative molecular mass of the holoenzyme is about 250 000. The enzyme reduces all four natural ribonucleoside diphosphates with comparable efficacy. GDP reduction requires dTTP as effector, ADP reduction is stimulated by dGTP, whereas pyrimidine nucleotide reduction is stimulated by any deoxyribonucleotide and ATP. Enzyme activity is independent of exogenous metal ions and is insensitive towards chelating agents. Hydroxyurea inactivates yeast ribonucleotide reductase in a slow reaction; half-inhibition (I50) is reached only at 2-6 mM hydroxyurea concentration. Up to 50% reactivation occurs spontaneously after removal of the inhibitor. In accord with previous attempts by others, extensive purification of the yeast enzyme has failed owing to its extreme instability in solution; the half-life of about 11 h could not be influenced by any protective measure. Taken together, yeast ribonucleotide reductase combines features known from Escherichia coli and mammalian enzymes with differing, individual properties.  相似文献   

16.
17.
The Gal4p family of yeast zinc cluster proteins comprises regulators of multidrug resistance genes. For example, Pdr1p and Pdr3p bind as homo- or heterodimers to pleiotropic drug response elements (PDREs) found in promoters of target genes. Other zinc cluster activators of multidrug resistance genes include Stb5p and Yrr1p. To better understand the interplay among these activators, we have performed native co-immunoprecipitation experiments using strains expressing tagged zinc cluster proteins from their natural chromosomal locations. Interestingly, Stb5p is found predominantly as a Pdr1p heterodimer and shows little homodimerization. No interactions of Stb5p with Pdr3p or Yrr1p could be detected in our assays. In contrast to Stb5p, Yrr1p is only detected as a homodimer. Similar results were obtained using glutathione S-transferase pull-down assays. Importantly, the purified DNA binding domains of Stb5p and Pdr1p bound to a PDRE as heterodimers in vitro. These results suggest that the DNA binding domains of Pdr1p and Stb5p are sufficient for heterodimerization. Our data demonstrate a complex interplay among these activators and suggest that Pdr1p is a master drug regulator involved in recruiting other zinc cluster proteins to fine tune the regulation of multidrug resistance genes.  相似文献   

18.
19.
The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained no detectable PRPP synthase activity. In contrast PRPP could be detected in growing cells containing PRS1 PRS2, PRS1 PRS3, PRS5 PRS2, or PRS5 PRS4. These apparent conflicting results indicate that, apart from the PRS1 PRS3-specified enzyme, PRS-specified enzyme is functional in vivo but unstable when released from the cell. Certain combinations of three PRS genes appeared to produce an enzyme that is stable in vitro. Thus, extracts of strains harboring PRS1 PRS2 PRS5, PRS1 PRS4 PRS5, or PRS2 PRS4 PRS5 as well as extracts of strains harboring combinations with PRS1 PRS3 contained readily assayable PRPP synthase activity. The data indicate that although certain pairwise combinations of subunits produce an active enzyme, yeast PRPP synthase requires at least three different subunits to be stable in vitro. The activity of PRPP synthases containing subunits 1 and 3 or subunits 1, 2, and 5 was found to be dependent on Pi, to be temperature-sensitive, and inhibited by ADP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号