首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dcm locus of Escherichia coli K-12 has been shown to code for a methylase that methylates the second cytosine within the sequence 5'-CC(A/T)GG-3'. This sequence is also recognized by the EcoRII restriction-modification system coded by the E. coli plasmid N3. The methylase within the EcoRII system methylates the same cytosine as the dcm protein. We have isolated, from a library of E. coli K-12 DNA, two overlapping clones that carry the dcm locus. We show that the two clones carry overlapping sequences that are present in a dcm+ strain, but are absent in a delta dcm strain. We also show that the cloned gene codes for a methylase, that it complements mutations in the EcoRII methylase, and that it protects EcoRII recognition sites from cleavage by the EcoRII endonuclease. We found no phage restriction activity associated with the dcm clones.  相似文献   

2.
The EcoRII endonuclease cleaves DNA containing the sequence CC(A/T)GG before the first cytosine. The methylation of the second cytosine in the sequence by either the EcoRII methylase or Dcm, a chromosomally coded protein in Escherichia coli, inhibits the cleavage. The gene for the EcoRII endonuclease was mapped by analysis of derivatives containing linker insertions, transposon insertions, and restriction fragment deletions. Surprisingly, plasmids carrying the wild-type endonuclease gene and the EcoRII methylase gene interrupted by transposon insertions appeared to be lethal to dcm+ strains of E. coli. We conclude that not all the EcoRII/Dcm recognition sites in the cellular DNA are methylated in dcm+ strains. The DNA sequence of a 1650-base pair fragment containing the endonuclease gene was determined. It revealed an open reading frame that could code for a 45.6-kDa protein. This predicted size is consistent with the known size of the endonuclease monomer (44 kDa). The endonuclease and methylase genes appear to be transcribed convergently from separate promoters. The reading frame of the endonuclease gene was confirmed at three points by generating random protein fusions between the endonuclease and beta-galactosidase, followed by an analysis of the sequence at the junctions. One of these fusions is missing 18 COOH-terminal amino acids of the endonuclease but still displays significant ability to restrict incoming phage in addition to beta-galactosidase activity. No striking similarity between the sequence of the endonuclease and any other protein in the PIR data base was found. The knowledge of the primary sequence of the endonuclease and the availability of the various constructs involving its gene should be helpful in the study of the interaction of the enzyme with its substrate DNA.  相似文献   

3.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

4.
The only cytosine methylase in Escherichia coli K-12 methylates the second cytosine in the sequence CC (A/T)GG and is encoded by gene dcm. Methylation and very short patch mismatch repair activities lacking in a dcm mutant of E. coli were restored by a plasmid containing the cloned dcm gene. In contrast, plasmids with the gene for EcoRII methylase, which is a homolog of dcm, restored only cytosine methylase activity and not mismatch repair.  相似文献   

5.
Recombinant DNA molecules were constructed from the plasmid pIL203 and the EcoRI-fragment of N3 plasmid containing EcoRII endonuclease and methylase genes and also a gene for resistance to sulfanilamide. The pIL203 plasmid, used as a vector, consisted of the Bam HI-EcoRI-fragment of the plasmid pBR322 conferring resistance to ampicillin and the Bam HI-EcoRI-fragment of lambda phage containing promoters, a thermosensitive mutation in the cI gene and a suppressible amber mutation in the cro gene. Ampicillin-sulfanilamide-resistant clones were selected and tested for their restriction and modification phenotype. The recombinant plasmid DNA, isolated from ApRSuR-resistant clones, which restricted and modified phage lambda imm21 with EcoRII specificity, had the EcoRI-fragment with EcoRII genes in a single orientation. The recombinant plasmid pSK323 was transferred into E. coli strains with su-, su1, su2 or su3 phenotypes. The synthesis of products of EcoRII genes by these strains grown at 37 degrees C is increased by 10--50-fold.  相似文献   

6.
It was shown that E. coli C, E. coli MRE 600 DNA, and also plasmid DNA of Col E1, RSF 2124 from E. coli K-12, and plasmid DNA from E. coli MRE 600 were completely resistant against restriction endonuclease R. Eco RII. Plasmid DNAs of Col E1, RSF 2124 amplificated for 4 hours in the presence of chloramphenicol are sensitive to R. Eco RII but after 16-hour amplification in the presence of chloramphenicol these DNAs acquire complete resistance against R. Eco RII. These data point to the slower rate of modification of DNA in vivo by DC-methylases of Eco RII type in comparison with DNA methylase Eco RII.  相似文献   

7.
8.
The methylations of adenine in the sequence -GATC- and of the second cytosine in the sequence - [Formula: see text] - were studied in Salmonella typhimurium and in Salmonella typhi. The study was carried out by using endonucleases which restrict the plasmid pBR322 by cleavage at the sequences -GATC- (DpnI and MboI) and - [Formula: see text] - (EcoRII). The restriction patterns obtained for this plasmid isolated from transformed S. typhimurium and S. typhi were compared with those of pBR322 isolated from Escherichia coli K-12. In E. coli K-12, adenines at the sequence -GATC- and the second cytosines at - [Formula: see text] - are met hylated by enzymes coded for by the genes dam and dem, respectively. From comparison of the restriction patterns obtained, it is concluded that S. typhimurium and S. typhi contain genes responsible for deoxyribonucleic acid methylation equivalent to E. coli K-12 genes dam and dcm.  相似文献   

9.
Nucleotide sequence of the EcoRII restriction endonuclease gene   总被引:3,自引:0,他引:3  
The nucleotide sequence of a 1394 basepair (bp) DNA fragment containing the EcoRII restriction endonuclease (R.EcoRII) gene was determined. The endonuclease gene is 1206 bp in length (predicted 402 amino acids (aa) and Mr = 45 178) and is separated by 33 bp from the EcoRII modification methylase (M.EcoRII) gene. The EcoRII restriction-modification system has a tail-to-tail organization of the two genes.  相似文献   

10.
The characterization of MvaI restriction-modification enzymes, isolated from Micrococcus varians RFL19, is reported. Both enzymes recognize the 5'CC decreases (A/T)GG nucleotide sequence. The endonuclease cleaves the sequence at the position indicated by the arrow, whereas the methylase modifies the internal cytosine, yielding N4-methylcytosine. This type of modification protects the substrate from R.MvaI cleavage. 5-Methylcytosine in the same position of the recognition sequence does not protect the substrate from R.MvaI cleavage. R.MvaI proved to be the first example of a restriction endonuclease differentiating the position of the methyl group in the heterocyclic ring of cytosine, located in the same site of the recognition sequence. M.MvaI modifies DNA dcm+ in vitro yielding N4,5-dimethylcytosine. N4-methylcytosine cannot be differentiated from cytosine using the Maxam-Gilbert DNA sequencing procedure.  相似文献   

11.
The recognition sequence for the dam methylase of Escherichia coli K12 has been determined directly by use of in vivo methylated ColE1 DNA or DNA methylated in vitro with purified enzyme. The methylase recognizes the symmetric tetranucleotide d(pG-A-T-C) and introduces two methyl groups per site in duplex DNA with the product of methylation being 6-methylaminopurine. This work has also demonstrated that Dpn I restriction endonuclease cleaves on the 3' side of the modified adenine within the methylated sequence to yield DNA fragments possessing fully base-paired termini. All sequences in ColE1 DNA methylated by the dam enzyme are subject to double strand cleavage by Dpn I endonuclease. Therefore, this restriction enzyme can be employed for mapping the location of sequences possessing the dam modification.  相似文献   

12.
The genes encoding the endonuclease and the methylase of the PvuI restriction and modification system were cloned in E.coli and characterized. The genes were adjacent in tandem orientation spanning a distance of 2200 bases. The PvuI endonuclease was a single polypeptide with a calculated molecular weight of 27,950 daltons. The endonuclease was easily detectable when the gene was expressed from its endogenous promotor and present on a low copy plasmid, but expression was considerably enhanced when the endonuclease gene was placed under the control of a strong promoter on a high copy plasmid. The methylase did not completely protect plasmid DNA from R.PvuI digestion until the methylase gene was placed under lac promotor control in a multicopy plasmid. In the absence of the M.PvuI methylase, expression of the R.PvuI endonuclease from the lac promotor on a multicopy plasmid was not lethal to wild type E.coli, but was lethal in a temperature-sensitive ligase mutant at the non-permissive temperature. Moreover, induction of the R.PvuI endonuclease under lambda pL promotor control resulted in complete digestion of the E.coli chromosome by R.PvuI.  相似文献   

13.
We wish to report the initial characterization of a recombinant clone containing the BamHI methylase gene. Genomic chromosomal DNA purified from Bacillus amyloliquefaciens was partially cleaved with HindIII, fractionated by size, and cloned into pSP64. Plasmid DNA from this library was challenged with BamHI endonuclease and transformed into Escherichia coli HB101. A recombinant plasmid pBamM6.5 and a subclone pBamM2.5 were shown to contain the BamHI methylase gene based on three independent observations. Both plasmids were found to be resistant to BamHI endonuclease cleavage, and chromosomal DNA isolated from E. coli HB101 cells harboring either of the plasmids pBamM6.5 or pBamM2.5 was resistant to cleavage by BamHI endonuclease. In addition, DNA isolated from lambda phage passaged through E. coli HB101 containing either plasmid was also resistant to BamHI cleavage. Expression of the BamHI methylase gene is dependent on orientation in pSP64. In these clones preliminary evidence indicates that methylase gene expression may be under the direction of the plasmid encoded LacZ promoter.  相似文献   

14.
Concatemer DNA duplexes which contain at the EcoRII restriction endonuclease cleavage sites (formula; see text) phosphodiester, phosphoamide or pyrophosphate internucleotide bonds have been synthesized. It has been shown that this enzyme did not cleave the substrate at phosphoamide bond. EcoRII endonuclease catalyzes single-strand cleavages both in dA- and dT-containing strands of the recognition site if the cleavage of the other strand has been blocked by modification of scissile bond or if the other strand has been cleaved. This enzyme interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of another one. Nucleotide sequences flanking the EcoRII site on both sides are necessary for effective cleavage of the substrate.  相似文献   

15.
The specific restriction endonuclease of the Escherichia coli plasmid, P15, has been purified to apparent homogeneity by a procedure that includes DNA-cellulose chromatography as well as a new endonuclease assay. Sedimentation on glycerol gradients showed two peaks of activity with values of 11.3 S and 15.7 S. The highly purified enzyme requires ATP and Mg2+ for activity and is stimulated by S-adenosylmethionine. A methylase activity is observed in the course of the endonucleolytic reaction which protects some of the DNA sites from cleavage.  相似文献   

16.
The nucleotide sequence recognized and cleaved by the restriction endonuclease MboI is 5' GATC and is identical to the central tetranucleotide of the restriction sites of BamHI and BglII. Experiments on the restriction of DNA from Escherichia coli dam and dam+ confirm the notion that GATC sequences are adenosyl-methylated by the dam function of E. coli and thereby are made refractory to cleavage by MboI. On the basis of this observation the degree of dam methylation of various DNAs was examined by cleavage with MboI and other restriction endonucleases. In plasmid DNA essentially all of the GATC sequences are methylated by the dam function. The DNA of phage lambda is only partially methylated, extended methylation is observed in the DNA of a substitution mutant of lambda, lambda gal8bio256, and in the lambda derived plasmid, lambdadv93, which is completely methylated. In contrast, phage T7 DNA is not methylated by dam. A suppression of dam methylation of T7 DNA appears to act only in cis dam. A suppression of dam methylation of T7 DNA appears to act only in cis since plasmid DNA replicated in a T7-infected cell is completely methylated. The results are discussed with respect to the participation of the dam methylase in different replication systems.  相似文献   

17.
The efficiency of cleavage of DNA duplexes with single EcoRII recognition sites by the EcoRII restriction endonuclease decreases with increasing substrate length. DNA duplexes of more than 215 bp are not effectively cleaved by this enzyme. Acceleration of the hydrolysis of long single-site substrates by EcoRII is observed in the presence of 11-14-bp substrates. The stimulation of hydrolysis depends on the length and concentration of the second substrate. To study the mechanism of EcoRII endonuclease stimulation, DNA duplexes with base analogs and modified internucleotide phosphate groups in the EcoRII site have been investigated as activators. These modified duplexes are cleaved by EcoRII enzyme with different efficiencies or are not cleaved at all. It has been discovered that the resistance of some of them can be overcome by incubation with a susceptible canonical substrate. The acceleration of cleavage of long single-site substrates depends on the type of modification of the activator. The modified DNA duplexes can activate EcoRII catalyzed hydrolysis if they can be cleaved by EcoRII themselves or in the presence of the second canonical substrate. It has been demonstrated that EcoRII endonuclease interacts in a cooperative way with two recognition sites in DNA. The cleavage of one of the recognition sites depends on the cleavage of the other. We suggest that the activator is not an allosteric effector but acts as a second substrate.  相似文献   

18.
The methods of isolation and partial purification of two DNA-cytosine-methylases (DC-methylases) EcoRII and E. coli K12 are described. After chromatography on phosphocellulose the enzymes were purified 100-fold, the yield being 30%. Further purification of the enzymes was performed by sedimentation in a sucrose concentration gradient. Both enzymes have native molecular weights of 50,000; DC-methylase from E. coli K12 may simultaneously occur in the forms with molecular weights of 70,000, 90,000 and 110,000. Both DC-methylases modify identical nucleotide sequences of DNA, have equal numbers (90) of methylation sites in phage lambda DNA and provide in vitro a complete protection of phage lambda DNA against restriction endonuclease EcoRII. DC-methylases E. Coli K12 and EcoRII differ in their chromatographic behaviour on phosphocellulose and capacity to form compexes with the cell DNA-adenine-methylase.  相似文献   

19.
This communicatiopn describes some properties of RCfr13 I and MCfr13 I, isolated from Citrobacter freundii RFL13. RCFfr13 I restriction enzyme recognizes the 5'-G GNCC sequence and cleaves, as indicated by the arrow. MCfr13 I methylase modifies the internal cytosine producing m5C (5'-GGNm5CC). RCfr13 I is sensitive not only to this type of substrate modification but also to hemimethylation in overlapping sites by MCfr10 I (internal cytosine of RCfr13 I recognition is methylated) and MHpa II (external cytosine is methylated). From these results the sensitivity of RCfr13 I to methylation by dcm methylase of E.coli in overlapping sites is deduced.  相似文献   

20.
The StyLTI restriction-modification system is common to most strains of the genus Salmonella, including Salmonella typhimurium. We report here the two-step cloning of the genes controlling the StyLTI system. The StyLTI methylase gene (mod) was cloned first. Then, the companion endonuclease gene (res) was introduced on a compatible vector. A strain of S. typhimurium sensitive to the coliphage lambda was constructed and used to select self-modifying recombinant phages from a Res- Mod+ S. typhimurium genomic library in the lambda EMBL4 cloning vector. The methylase gene of one of these phages was then subcloned in pBR328 and transferred into Escherichia coli. In the second step, the closely linked endonuclease and methylase genes were cloned together on a single DNA fragment inserted in pACYC184 and introduced into the Mod+ E. coli strain obtained in the first step. Attempts to transform Mod- E. coli or S. typhimurium strains with this Res+ Mod+ plasmid were unsuccessful, whereas transformation of Mod+ strains occurred at a normal frequency. This can be understood if the introduction of the StyLTI genes into naive hosts is lethal because of degradation of host DNA by restriction activity; in contrast to most restriction-modification systems, StyLTI could not be transferred into naive hosts without killing them. In addition, it was found that strains containing only the res gene are viable and lack restriction activity in the absence of the companion mod gene. This suggests that expression of the StyLTI endonuclease activity requires at least one polypeptide involved in the methylation activity, as is the case for types I and III restriction-modification systems but not for type II systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号