首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied beta-adrenergic agonist-stimulated phosphorylation of the ryanodine receptor in rat cardiac myocytes. The ryanodine receptor solubilized from myocytes and immunoprecipitated by a monoclonal antibody against canine cardiac ryanodine receptor was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (PKA). Incubation of saponin-permeabilized myocytes with [gamma-32P]ATP also induced ryanodine receptor phosphorylation, which was enhanced significantly in the presence of isoproterenol. This stimulating action of isoproterenol was suppressed by the beta-adrenergic antagonist, propranolol. On the other hand, exogenously added cAMP caused a much larger stimulation of phosphorylation of the ryanodine receptor in permeabilized myocytes. The beta-agonist-induced phosphorylation of the ryanodine receptor was also observed in intact myocytes from the newborn rat heart. These results suggest that the ryanodine receptor is phosphorylated by PKA during beta-adrenergic stimulation of cardiac myocytes.  相似文献   

2.
The effect of beta-adrenergic stimulation on sarcolemmal protein phosphorylation was examined in intact ventricular myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles enriched 3-5-fold in sarcolemma were isolated by differential centrifugation followed by sucrose gradient centrifugation. Perfusion of hearts with isoproterenol stimulated 32P incorporation into a protein of apparent molecular weight of 15,000, which copurified with sarcolemmal vesicles. The increase in 32P incorporation was rapid in onset and elevated 2.5-3.0-fold after 30-45 s exposure of hearts to 100 nM isoproterenol. A positive correlation was found between stimulation of phosphorylation of the 15-kDa protein and the increase in the maximal rate of developed tension in intact ventricles after administration of isoproterenol. Phosphorylated phospholamban (most likely present as a contaminant) was also identified in the same sarcolemmal preparations. However, phospholamban and the 15-kDa sarcolemmal substrate were different proteins. Boiling of the membrane samples in sodium dodecyl sulfate prior to electrophoresis dissociated the high Mr form of phospholamban into the form of lower Mr but did not alter the mobility of the 15-kDa protein in sodium dodecyl sulfate-polyacrylamide gels. The 15-kDa protein did not undergo the electrophoretic mobility shift that is characteristic of phospholamban after cAMP-dependent phosphorylation nor did it cross-react with a highly specific phospholamban antibody. In vitro phosphorylation experiments conducted with the unmasking agent Triton X-100 suggested that the 15-kDa protein was localized to the cytoplasmic surfaces of sarcolemmal vesicles. These results demonstrate phosphorylation of a sarcolemmal protein, distinct from phospholamban, in response to beta-adrenergic stimulation of the heart. Phosphorylation of the sarcolemmal 15-kDa protein may play a role in mediating the effects of beta-adrenergic agonists on cardiac contractile force.  相似文献   

3.
The effects of alpha- and beta-adrenergic stimulation on sarcolemmal protein phosphorylation and contractile slow responses were studied in intact myocardium. Isolated rat ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles partially enriched in sarcolemma were isolated from individual hearts. Alterations in the sarcolemmal slow inward Ca2+ current were assessed in the 32P-perfused hearts using a contractile slow response model. In this model, Na+ channels were first inactivated by partial depolarization of the hearts in 25 mM K+ after which alterations in Ca2+ channel activity produced by either alpha- or beta-adrenergic agonists could be assessed as restoration of contractions. alpha-Adrenergic stimulation (phenylephrine + propranolol) of the perfused hearts resulted in increased 32P incorporation into a 15-kDa sarcolemmal protein. This protein co-migrated with the 15-kDa sarcolemmal protein phosphorylated in hearts exposed to beta-adrenergic stimulation produced by isoproterenol. beta-Adrenergic stimulation, but not alpha-adrenergic stimulation, also resulted in phosphorylation of the sarcoplasmic reticulum protein, phospholamban. Phosphorylation of the 15-kDa protein in perfused hearts in response to either alpha- or beta-adrenergic stimulation was associated with restoration of contractions, indicative of increases in the slow inward Ca2+ current. Increases in 32P incorporation into the 15-kDa protein preceded restoration of contractions by phenylephrine. Nifedipine abolished the contractile responses to alpha-adrenergic stimulation while having no effect on increases in 15-kDa protein phosphorylation. The effects of alpha-adrenergic stimulation occurred in the absence of increases in cAMP levels. These results suggest that phosphorylation of the 15-kDa protein may be involved in increases in the slow inward current produced by stimulation of either alpha- or beta-adrenergic receptors.  相似文献   

4.
The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and Ca2+ transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with 32Pi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in 32P incorporation into phospholamban. Associated with the increases in 32P incorporation were increases in the initial rate of phosphate-facilitated Ca2+ uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in 32P incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and Ca2+ uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.  相似文献   

5.
We studied the regulation of dephosphorylation of cAMP-dependent phosphorylated proteins of isolated, permeabilized (skinned) myocardial cells from adult rat. Staurosporine, a potent inhibitor of protein kinase, inhibited cAMP-dependent phosphorylation of phospholamban and troponin-I, the key proteins in the control of contraction and relaxation of the myocardial cells. Staurosporine antagonized the stimulatory action of cAMP on the spontaneous beating of the myocytes accompanied by dephosphorylation of phospholamban but not of troponin-I at pCa 7-8. In cold ATP dilution experiments with apparent stoppage of protein phosphorylation, dephosphorylation of phospholamban was accelerated both by Ca2+ and staurosporine but that of troponin-I took place only in the presence of Ca2+ ion (pCa less than 6.5). These phenomena suggest a bi-directional regulation of dephosphorylation of the key proteins by the intracellular messengers cAMP and Ca2+.  相似文献   

6.
We examined the role of cyclic ADP-ribose (cADP-ribose) as a second messenger downstream of adrenergic receptors in the heart after excitation of sympathetic neurons. To address this question, ADP-ribosyl cyclase activity was measured as the rate of [(3)H]cADP-ribose formation from [(3)H]NAD(+) in a crude membrane fraction of rat ventricular myocytes. Isoproterenol at 1 microM increased ADP-ribosyl cyclase activity by 1.7-fold in ventricular muscle; this increase was inhibited by propranolol. The stimulatory effect on the cyclase was mimicked by 10 nM GTP and 10 microM guanosine 5'-3-O-(thio)triphosphate, whereas 10 microM GTP inhibited the cyclase. Cholera toxin blocked the activation of the cyclase by isoproterenol and GTP. The above effects of isoproterenol and GTP in ventricular membranes were confirmed by cyclic GDP-ribose formation fluorometrically. These results demonstrate the existence of a signal pathway from beta-adrenergic receptors to membrane-bound ADP-ribosyl cyclase via G protein in the ventricular muscle cells and suggest that increased cADP-ribose synthesis is involved in up-regulation of cardiac function by sympathetic stimulation.  相似文献   

7.
Disturbances in the cAMP production during -adrenergic stimulation and alterations of Ca 2+ transport controlling proteins and their regulation in the sarcoplasmic reticulum might be involved in the pathogenesis of the failing human heart. Thus, we investigated the cAMP-mediated phosphorylation of phospholamban, troponin I and C-protein in electrically driven, intact isolated trabeculae carneae from nonfailing and failing (NYHA IV) human hearts in parallel to contractile properties on the same tissue samples. The increase in force of contraction induced by isoproterenol (0.2 M) or pimobendan (100 M), a phosphodiesterase inhibitor, was diminished in the failing human hearts compared to nonfailing hearts by 49% and 36%, respectively. Concomitantly the isoproterenol-induced phosphorylation (pmol P/mg homogenate protein) of phospholamban, troponin I and C-protein was reduced from 13.0 ± 2.4 (n = 4), 30.5 ± 1.5 (n = 5) and 11.0 ± 1.3 (n = 5) in the nonfailing heart to 5.2 ±0.6 (n = 13), 14.6 ± 2.2 (n = 16) and 7.1 ± 1.0 (n = 6) in the failing human heart, respectively. Pimobendan changed the phosphorylation state of these proteins similar to isoproterenol. The fact that combined addition of both agents or dibuturyl CAMP (1 mM) alone restored the phosphorylation capacity as observed in the control groups indicates that i) a reduced cAMP generation is related to the reduced phosphorylation of regulatory phosphoproteins located in the sarcoplasmic reticulum and contractile apparatus e.g. phospholamban, troponin I and C-protein, that ii) there is a relationship between protein phosphorylation state and contractile activity and that iii) no changes in the respective content of phosphoproteins are involved in the limitation of cAMP-mediated inotopic activity in the failing human heart. (Mol Cell Biochem 157: 171–179, 1996)  相似文献   

8.
Spontaneously beating myocytes from the heart ventricles of 1 to 4-day old rats were maintained for 8 days in stationary or in rocker culture under otherwise identical conditions and exposed to phenylephrine and isoproterenol for comparison of their positive chronotropic responses to alpha and to beta-adrenoceptor stimulation, respectively. The heart myocytes in rocked culture were more sensitive to phenylephrine and less sensitive to isoproterenol than were the myocytes in stationary culture and they also displayed a greater maximal response to the alpha-agonist. Addition of 1 mM L(+)-lactate to the rocker cultures abolished alpha-adrenergic responsiveness in one third of the cases while persistently increasing beta-adrenergic sensitivity.  相似文献   

9.
Phospholamban is the major membrane protein of the heart phosphorylated in response to beta-adrenergic stimulation. In cell-free systems, cAMP-dependent protein kinase catalyzes exclusive phosphorylation of serine 16 of phospholamban, whereas Ca2+/calmodulin-dependent protein kinase gives exclusive phosphorylation of threonine 17 (Simmerman, H. K. B., Collins, J. H., Theibert, J. L., Wegener, A. D., and Jones, L. R. (1986) J. Biol. Chem. 261, 13333-13341). In this work we have localized the sites of phospholamban phosphorylation in intact ventricles treated with the beta-adrenergic agonist isoproterenol. Isolation of phosphorylated phospholamban from 32P-perfused guinea pig ventricles, followed by partial acid hydrolysis and phosphoamino acid analysis, revealed phosphorylation of both serine and threonine residues. At steady state after isoproterenol exposure, phospholamban contained approximately equimolar amounts of these two phosphoamino acids. Two major tryptic phosphopeptides containing greater than 90% of the incorporated radioactivity were obtained from phospholamban labeled in intact ventricles. The amino acid sequences of these two tryptic peptides corresponded exactly to residues 14-25 and 15-25 of canine cardiac phospholamban, thus localizing the sites of in situ phosphorylation to serine 16 and threonine 17. Phosphorylation of phospholamban at two sites in heart perfused with isoproterenol was supported by detection of 11 distinct mobility forms of the pentameric protein by use of the Western blotting method, consistent with each phospholamban monomer containing two phosphorylation sites, and with each pentamer containing from 0 to 10 incorporated phosphates. Our results localize the sites of in situ phospholamban phosphorylation to serine 16 and threonine 17 and, furthermore, are consistent with the phosphorylations of these 2 residues being catalyzed by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively.  相似文献   

10.
Adult feline ventricular myocytes cultured on a laminin-coated substratum reestablish intercellular junctions, yet disassemble their myofibrils. Immunofluorescence microscopy reveals that these non- beating heart cells lack vinculin-positive focal adhesions; moreover, intercellular junctions are also devoid of vinculin. When these quiescent myocytes are stimulated to contract with the beta-adrenergic agonist, isoproterenol, extensive vinculin-positive focal adhesions and intercellular junctions emerge. If solitary myocytes are stimulated to beat, an elaborate series of vinculin-positive focal adhesions develop which appear to parallel the reassembly of myofibrils. In cultures where neighboring myocytes reestablish cell-cell contact, myofibrils appear to reassemble from the fascia adherens rather than focal contacts. Activation of beating is accompanied by a significant reduction in the rate of total and cytoskeletal protein synthesis; in fact, myofibrillar reassembly, redevelopment of focal adhesions and fascia adherens junctions require no protein synthesis for at least 24 h, implying the existence of an assembly competent pool of cytoskeletal proteins. Maturation of the fasciae adherens and the appearance of vinculin within Z-line/costameres, does require de novo synthesis of new cytoskeletal proteins. Changes in cytoskeletal protein turnover appear dependent on beta agonist-induced cAMP production, but myofibrillar reassembly is a cAMP-independent event. Such observations suggest that mechanical forces, in the guise of contractile activity, regulate vinculin distribution and myofibrillar order in cultured adult feline heart cells.  相似文献   

11.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

12.
We recently demonstrated that heterologous desensitization of adenylate cyclase in turkey erythrocytes is highly correlated with phosphorylation of the beta-adrenergic receptor. In contrast, little is known of the biochemical mechanisms underlying the homologous form of beta-adrenergic receptor desensitization, which is agonist-specific and not cAMP-mediated. Accordingly, the present studies were undertaken to examine if phosphorylation of the beta-adrenergic receptor is also associated with this form of desensitization in a well studied model system, the frog erythrocyte. Preincubation of these cells with the beta-adrenergic agonist isoproterenol leads to a 45% decline in isoproterenol-stimulated adenylate cyclase activity without significant changes in basal, prostaglandin E1-, NaF-, guanyl-5'-yl-imidodiphosphate-, forskolin-, or MnCl2-stimulated enzyme activities. There is also a 48% decline in [125I]iodocyanopindolol membrane binding sites. Conversely, preincubation of the cells with prostaglandin E1 attenuates only the prostaglandin E1-stimulated enzyme activity and does not affect [125I]iodocyanopindolol binding. Phosphorylation of the beta-adrenergic receptor was assessed by preincubating the cells with 32Pi and desensitizing them, and subsequently purifying the receptors by affinity chromatography. Under basal conditions there is about 0.62 mol of phosphate/mol of receptor whereas after desensitization with isoproterenol this increases to 1.9 mol/mol. This isoproterenol-induced receptor phosphorylation exhibits stereospecificity and is blocked by the beta-adrenergic antagonist propranolol. In addition, preincubation with prostaglandin E1 does not promote beta-adrenergic receptor phosphorylation. These data suggest that receptor phosphorylation is involved in homologous as well as heterologous forms of desensitization and may provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

13.
The phosphorylation of cardiac membrane proteins has been studied in preparations of newborn chick hearts. Membranes were isolated from 32P-loaded tissue after treatment with or without the beta-adrenergic receptor agonist isoproterenol and/or the muscarinic cholinergic receptor agonist oxotremorine. The phosphorylation of a low molecular weight membrane protein was enhanced by isoproterenol as early as 10 s after adding the drug. This phosphoprotein had a molecular weight of approximately 26,000 or 14,000 depending on the conditions used to solubilize the membranes prior to electrophoresis. It is most probably phospholamban/calciductin. The apparent molecular weight of the protein observed at 26,000 increased by approximately 1,000 as phosphorylation increased. The phosphorylation of this protein was abolished by short term treatment of the isoproterenol-treated tissue with the muscarinic receptor agonist oxotremorine. Effects of oxotremorine were observed within 30 s and were maximal between 2-5 min. The oxotremorine-induced decrease in phosphorylation was accompanied by a decrease in molecular weight. This phosphoprotein was found in a membrane fraction enriched in cardiac sarcolemma as well as in another containing sarcolemma and sarcoplasmic reticulum. The phosphorylation of this membrane component may play a role in the effects of beta-adrenergic and muscarinic cholinergic agonists on cardiac contractile force.  相似文献   

14.
15.
In the presence of 30% glycerol, the cilia of a permeabilized cell model from Paramecium exhibit dynamic orientation changes while displaying only a restricted cyclic beating with a very small amplitude. The direction of cilia under these conditions corresponds to the direction of the effective power stroke of cilia beating in the absence of glycerol, i.e., pointing posteriorly in the absence of Ca2+ and anteriorly at > 10(-6) M Ca2+. Ciliary reorientation toward the posterior in response to the removal of Ca2+ is particularly conspicuous; all the cilia become predominantly pointing to the posterior end all through their beating phases. Previous studies suggested that the effect of glycerol is caused through modification of cAMP-dependent protein phosphorylation. To determine whether glycerol in fact affects ciliary reorientation through changes in protein phosphorylation, here we examined protein phosphorylation in the axonemes. Glycerol stimulated cAMP-induced phosphorylation of 29-kDa and 65-kDa proteins. The stimulation of phosphorylation was found to be partly due to the inhibition of endogenous phosphodiesterase (PDE), and partly due to the inhibition of the dephosphorylation of the 29-kDa and 65-kDa phosphoproteins within the axoneme. Thus glycerol appears to cause predominant posterior orientation of cilia by stimulating cAMP-dependent phosphorylation on those proteins. In addition, glycerol appears to inhibit ciliary beating through inhibition of dynein ATPase.  相似文献   

16.
We studied how the nitric oxide (NO*) donor 3-morpholinosydnonimine (SIN-1) alters the response to beta-adrenergic stimulation in cardiac rat myocytes. We found that SIN-1 decreases the positive inotropic effect of isoproterenol (Iso) and decreases the extent of both cell shortening and Ca2+ transient. These effects of SIN-1 were associated with an increased intracellular concentration of cGMP, a decreased intracellular concentration of cAMP, and a reduction in the levels of phosphorylation of phospholamban (PLB) and troponin I (TnI). The guanylyl cyclase inhibitor 1H-8-bromo-1,2,4-oxadiazolo (3,4-d)benz(b)(1,4)oxazin-1-one (ODQ) was not able to prevent the SIN-1-induced reduction of phosphorylation levels of PLB and TnI. However, the effects of SIN-1 were abolished in the presence of superoxide dismutase (SOD) or SOD and catalase. These data suggest that, in the presence of Iso, NO-related congeners, rather than NO*, are responsible for SIN-1 effects. Our results provide new insights into the mechanism by which SIN-1 alters the positive inotropic effects of beta-adrenergic stimulation.  相似文献   

17.
The present study was undertaken in order to examine the possible involvement of protein phosphorylation during beta-adrenergic stimulation in the rat parotid gland. Isolated parotid gland slices were stimulated by either isoproterenol or dibutyryl adenosine 3',5'-monophosphate (Bt2cAMP) in the presence or absence of propranolol. Amylase output was measured as a parameter for the degree of stimulation of secretion. Stimulation of secretion by either isoproterenol or Bt2AMP was associated with phosphorylation of three protein bands as revealed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and autoradiography. The apparent molecular weights of the three proteins were 35,100 (protein I), 25,700 (protein II) and 20,400 (protein III). After cell fractionation by differential and gradient centrifugation, protein I was enriched in a light membrane fraction most likely corresponding to the plasma membrane as revealed by marker enzyme analysis. Proteins II and III were recovered in a denser fraction containing mainly mitochondria and rough microsomes. The effect of isoproterenol but not that of Bt2cAMP on phosphorylation of all three protein bands was completely abolished by propranolol. The different time course in the stimulation of amylase secretion by isoproterenol and Bt2cAMP respectively was reflected by corresponding differences in the time course of protein phosphorylation.  相似文献   

18.
In contrast to the other heterotrimeric GTP-binding proteins (G proteins) Gs and Gi, the functional role of G o is still poorly defined. To investigate the role of G alpha o in the heart, we generated transgenic mice with cardiac-specific expression of a constitutively active form of G alpha o1* (G alpha o*), the predominant G alpha o isoform in the heart. G alpha o expression was increased 3- to 15-fold in mice from 5 independent lines, all of which had a normal life span and no gross cardiac morphological abnormalities. We demonstrate enhanced contractile function in G alpha o* transgenic mice in vivo, along with increased L-type Ca2+ channel current density, calcium transients, and cell shortening in ventricular G alpha o*-expressing myocytes compared with wild-type controls. These changes were evident at baseline and maintained after isoproterenol stimulation. Expression levels of all major Ca2+ handling proteins were largely unchanged, except for a modest reduction in Na+/Ca2+ exchanger in transgenic ventricles. In contrast, phosphorylation of the ryanodine receptor and phospholamban at known PKA sites was increased 1.6- and 1.9-fold, respectively, in G alpha o* ventricles. Density and affinity of beta-adrenoceptors, cAMP levels, and PKA activity were comparable in G alpha o* and wild-type myocytes, but protein phosphatase 1 activity was reduced upon G alpha o* expression, particularly in the vicinity of the ryanodine receptor. We conclude that G alpha o* exerts a positive effect on Ca2+ cycling and contractile function. Alterations in protein phosphatase 1 activity rather than PKA-mediated phosphorylation might be involved in hyperphosphorylation of key Ca2+ handling proteins in hearts with constitutive G alpha o activation.  相似文献   

19.
In this study we evaluated the contractile characteristics of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)1a-expressing hearts ex vivo and in vivo and in particular their response to beta-adrenergic stimulation. Analysis of isolated, work-performing hearts revealed that transgenic (TG) hearts develop much higher maximal rates of contraction and relaxation than wild-type (WT) hearts. Addition of isoproterenol only moderately increased the maximal rate of relaxation (+20%) but did not increase contractility or decrease relaxation time in TG hearts. Perfusion with varied buffer Ca(2+) concentrations indicated an altered dose response to Ca(2+). In vivo TG hearts displayed fairly higher maximal rates of contraction (+ 25%) but unchanged relaxation parameters and a blunted but significant response to dobutamine. Our study also shows that the phospholamban (PLB) level was decreased (-40%) and its phosphorylation status modified in TG hearts. This study clearly demonstrates that increases in SERCA protein level alter the beta-adrenergic response and affect the phosphorylation of PLB. Interestingly, the overall cardiac function in the live animal is only slightly enhanced, suggesting that (neuro)hormonal regulations may play an important role in controlling in vivo heart function.  相似文献   

20.
Regulation of cardiac contractile proteins by phosphorylation   总被引:4,自引:0,他引:4  
Several of the contractile proteins of the heart can be phosphorylated, but in studies with isolated proteins only phosphorylation of the inhibitory subunit of troponin (TnI) produces a major change in the properties of the contractile system. As TnI is phosphorylated, the concentration of calcium required for activation of contraction is increased. Phosphorylation of the tropomyosin-binding subunit of troponin (TnT) or of the light chain of myosin fails to change ATPase activity of the isolated protein system. Phosphorylation of TnI is stimulated by the beta-adrenergic system and inhibited by the cholinergic system. Maximum calcium-activated force produced by the contractile system can be increased in hyperpermeable cardiac cells by cyclic AmP (cAMP) or agents that stimulate cAMP synthesis. This change in the contractile system, which appears to be part of the physiological response to beta-adrenergic stimulation, is mediated by phosphorylation of an intermediate that then modifies the contractile system. Phosphorylation of the contractile proteins is not involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号