首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin, an active constituent of turmeric, has been shown to possess inhibitory effect of cell proliferation and induction of apoptosis towards a board range of tumors. Cell inhibition activities of curcumin are behaved differently in various cell types. To investigate the mechanism basis for the cell inhibition of curcumin on breast cancer cell lines, we examine curcumin effect on NFκB, cell cycle regulatory proteins and matrix metalloproteinases (MMPs) in two breast cancer cell lines (MDA-MB-231 and BT-483). Cell proliferation was performed by water soluble tetrazolium WST-1 assay. The effect of curcumin's on the activity of matrix metalloproteinase-1, 3, 9 were analyzed by RT-PCR. Cell cycle regulatory protein including cyclin D1, CDK4 and p21 were examined by immunochemistry. The expressions of NFκB in breast cancer cells treated with curcumin were studied by immunochemistry and western blot. The results from WST-1 cell proliferation assay showed that curcumin exhibited the anti-proliferation effect on MDA-MB-231 and BT-483 cells in a time- and dose-dependent manner. In response to the treatment, while, the expression of cyclin D1 had declined in MDA-MB-231 and the expression of CDK4 in BT-483 had declined. MMP1 mRNA expression in BT-483 and MDA-MB-231 had significantly decreased in curcumin treatment group compared with control group. Our finding extrapolates the antitumor activity of curcumin in mediating the breast cancer cell proliferative rate and invasion by down-regulating the NFκB inducing genes.  相似文献   

2.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

3.
Plasma membrane calcium ATPases (PMCAs) actively extrude Ca(2+) from the cell and are essential components in maintaining intracellular Ca(2+) homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca(2+) signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca(2+) signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca(2+), which was more evident at higher Ca(2+) loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca(2+) ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NFκB nuclear translocation, and an NFκB inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells.  相似文献   

4.
Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anti-cancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.  相似文献   

5.
6.
目的研究胎盘特异性基因1(PLAC1)特异性T细胞受体(TCR)基因修饰T细胞对乳腺癌的抗肿瘤作用。 方法磁珠分选人类白细胞抗原分型为A2(HLA-A2)的志愿者外周血单个核细胞(PBMC)中的CD8+ T细胞,流式检测CD8+ T细胞的表型。通过慢病毒载体构建、包装,将可识别乳腺癌肿瘤抗原PLAC1的HLA-A2限制性的TCR基因导入CD8+ T细胞(称为TCR-T细胞),以慢病毒空载体包装、感染的CD8+ T细胞(NC-T细胞)作为对照细胞,通过流式细胞术检测PLAC1特异性TCR的表达效率。免疫荧光和流式细胞术检测乳腺癌细胞MCF-7和MDA-MB-231(三阴性乳腺癌细胞)的PLAC1和HLA-A2血清型的表达。WST-1法检测不同效靶比(5?:?1、10?:?1和20?:?1)TCR-T细胞或NC-T细胞与乳腺癌细胞MCF-7或MDA-MB-231作用后的细胞毒性,并通过ELISA检测共培养后T细胞IFN-γ的释放量。通过裸鼠皮下人乳腺癌移植瘤模型检测TCR-T细胞以及NC-T细胞的抗肿瘤作用。采用单因素方差分析及独立t检验进行统计学分析。 结果磁珠分选出的CD8+ T细胞CD3+ CD8+比例达到(98.89±0.30)%。经慢病毒感染、五聚体检测,TCR-T细胞中PLAC1特异性TCR的正确表达率为(24.58±0.82)%,NC-T细胞不表达PLAC1特异性TCR。免疫荧光和流式结果显示乳腺癌细胞MCF-7和MDA-MB-231为HLA-A2和PLAC1双阳性表达细胞。其中流式检测结果显示,MCF-7和MDA-MB-231细胞中HLA-A2的表达效率分别为(93.04±1.36)%和(98.72±0.12)%。在效靶比为20?:?1时,TCR-T细胞对MCF-7杀伤率为(51.5±1.37)%,高于NC-T细胞对MCF-7的杀伤率(5.93±2.40)%,t = 15.507,P < 0.01;TCR-T细胞对MDA-MB-231杀伤率为(44.34±2.20)%,高于NC-T细胞对MDA-MB-231杀伤率(5.15±2.40)% (t?= 10.694,P < 0.01)。在相同效靶比情况下,TCR-T细胞对MCF-7或MDA-MB-231细胞的细胞毒性高于NC-T细胞,且随着效靶比的增加杀伤效果增强。在效靶比为20?:?1时,与MCF-7共培养后TCR-T细胞IFN-γ的分泌水平[(347.49±4.10)pg/ml]高于NC-T细胞[(18.14±6.22)pg/ml](t = -76.638,P < 0.01);与MDA-MB-231共培养后TCR-T细胞IFN-γ的分泌水平为(255.25±6.85)pg/ml,高于NC-T细胞[(14.70±6.38)pg/ml] (t = -44.526,P < 0.01),且随着效靶比的增加分泌量升高。在裸鼠皮下人乳腺癌移植瘤实验中,生理盐水组和NC-T细胞移植组小鼠的肿瘤生长迅速,TCR-T细胞治疗组小鼠肿瘤生长相对缓慢,在移植后第35天,生理盐水组、NC-T细胞组和TCR-T细胞组小鼠肿瘤的平均体积分别为(5?636.96±2?879.55)mm3、(5?522.12±3?391.48)mm3和(1?403.85±1?394.31)mm3,TCR-T细胞治疗组小鼠肿瘤体积明显小于生理盐水组(F = 0.1813,P < 0.05)和NC-T细胞组(F = 0.1307,P?< 0.05)。 结论PLAC1特异性TCR基因修饰T细胞对乳腺癌细胞具有较强的抗肿瘤作用,PLAC1可作为乳腺癌治疗的潜在靶标;PLAC1特异性TCR基因修饰T细胞治疗是PLAC1表达阳性的乳腺癌治疗的新策略。  相似文献   

7.
The expression of the plasma membrane Ca2+ ATPase (PMCA) isoforms is altered in several types of cancer cells suggesting that they are involved in cancer progression. In this study we induced differentiation of MCF-7 breast cancer cells by histone deacetylase inhibitors (HDACis) such as short chain fatty acids (SCFAs) or suberoylanilide hydroxamic acid (SAHA), and by phorbol 12-myristate 13-acetate (PMA) and found strong upregulation of PMCA4b protein expression in response to these treatments. Furthermore, combination of HDACis with PMA augmented cell differentiation and further enhanced PMCA4b expression both at mRNA and protein levels. Immunocytochemical analysis revealed that the upregulated protein was located mostly in the plasma membrane. To examine the functional consequences of elevated PMCA4b expression, the characteristics of intracellular Ca2+ signals were investigated before and after differentiation inducing treatments, and also in cells overexpressing PMCA4b. The increased PMCA4b expression – either by treatment or overexpression – led to enhanced Ca2+ clearance from the stimulated cells. We found pronounced PMCA4 protein expression in normal breast tissue samples highlighting the importance of this pump for the maintenance of mammary epithelial Ca2+ homeostasis. These results suggest that modulation of Ca2+ signaling by enhanced PMCA4b expression may contribute to normal development of breast epithelium and may be lost in cancer.  相似文献   

8.
We investigated binding characteristics of basic fibroblast growth factor (bFGF) on membranes prepared from 4 human breast cancer cell lines and 38 primary BC biopsies. Competitive binding experiments were performed and analyzed using the "Ligand" program. Furthermore bFGF mitogenic activity was measured by [3H]thymidine incorporation into DNA from breast cancer cell lines. The presence of high-affinity binding sites was demonstrated in each cell type (MCF-7: Kd = 0.60 nM; T-47D: Kd = 0.55 nM; BT-20: Kd = 0.77 nM; MDA-MB-231: Kd = 0.34 nM). The presence of these high-affinity binding sites was confirmed with saturation experiments. A second class of low-affinity binding sites was detected in the 2 hormone-independent cells (BT-20: Kd = 2.9 nM; MDA-MB-231: Kd = 2.7 nM). bFGF stimulated the proliferation of MCF-7, T-47D, BT-20 but not MDA-MB-231 cell lines. With competition experiments, binding sites were detectable in 36/38 breast cancers; high-affinity binding sites (Kd less than 1 nM) were present in 19/36 cases and low-affinity binding sites (Kd greater than 2 nM) were present in 29/36 cases (the two classes of binding sites were present in 12 breast cancers). No relation between bFGF binding sites and node involvement, histologic type or grading of the tumor was evidenced. There were negative correlations (Spearman test) between total bFGF binding sites and estradiol receptor (P = 0.05) or progesterone receptor (P = 0.009). The demonstration of (1) bFGF specific binding sites in breast cancer membranes, and (2) bFGF growth stimulation of some breast cancer cell lines indicates that this factor may be involved directly in the growth of some breast cancers.  相似文献   

9.
The effect of numerous anticancer drugs on breast cancer cell lines and rodent mammary tumors can be enhanced by a treatment with long-chain n − 3 polyunsaturated fatty acids (n − 3 PUFA) such as docosahexaenoic acid (DHA, 22:6n − 3) which is a natural ligand of peroxisome proliferator-activated receptors (PPAR). In order to identify the PPAR regulating breast cancer cell growth, we tested the impact of siRNA, selected to suppress PPARα, PPARβ or PPARγ mRNA in MDA-MB-231 and MCF-7 breast cancer cell lines. The siPPARβ was the most effective to inhibit breast cancer cell growth in both cell lines. Using PPARα, PPARβ and PPARγ pharmacological antagonists, we showed that PPARβ regulated DHA-induced inhibition of growth in MDA-MB-231 and MCF-7 cells. In addition, the expressions of all 3 PPAR mRNA were co-regulated in both cell lines, upon treatments with siRNA or PPAR antagonists. PPAR mRNA expression was also examined in the NitrosoMethylUrea (NMU)-induced rat mammary tumor model. The expressions of PPARα and PPARβ mRNAs were correlated in the control group but not in the n − 3 PUFA group in which the expression of PPARβ mRNA was reduced. Although PPARα expression was also increased in the n − 3 PUFA-enriched diet group under docetaxel treatment, it is only the expression of PPARβ mRNA that correlated with the regression of mammary tumors: those that most regressed displayed the lowest PPARβ mRNA expression. Altogether, these data identify PPARβ as an important player capable of modulating other PPAR mRNA expressions, under DHA diet, for inhibiting breast cancer cell growth and mammary tumor growth.  相似文献   

10.
We have compared several breast cancer cell lines that differ in their responsiveness to TNF to determine the involvement of PKC isozymes in regulating sensitivity of breast cancer cells to TNF. While MCF-7 and BT-20 cells were responsive to TNF without any metabolic inhibitors, CAMA-1 and SKBR-3 cells responded to TNF in the presence of cycloheximide; MDA-MB-231 and Hs578t cells were resistant to TNF even in the presence of cycloheximide. Bisindolylmaleimide (BIM), an inhibitor of PKC, either alone (MCF-7 and BT-20) or in combination with cycloheximide enhanced sensitivity of these cells to TNF. The PKC isozyme profile of MCF-7 cells was similar to BT-20 cells and that of CAMA-1 cells was similar to SKBR-3 cells. MCF-7, BT-20 and MDA-MB-231 cells that were most responsive to BIM-mediated sensitization to TNF contained relatively high level of PKC epsilon and proteolytic cleavage of PKC epsilon correlated with TNF-induced cell death. BIM did not inhibit NF-kappa B activation by TNF but caused activation of caspases and enhanced cleavage of PKC delta and -epsilon. These results suggest that proteolytic cleavage of PKC epsilon may be associated with PKC inhibitor mediated sensitization of breast cancer cells to TNF.  相似文献   

11.
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.  相似文献   

12.
Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 µM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 µM LPA, which remains high at 10 µM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling. G protein-coupled receptor; lysophosphatidic acid; chemotactic migration; GTPase  相似文献   

13.
The transport of L-leucine by two human breast cancer cell lines has been examined. L-leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+ -independent pathway. L-leucine uptake by both cell lines was inhibited by L-alanine, D-leucine and to a lesser extent by L-lysine but not by L-proline. Estrogen (17beta-estradiol) stimulated L-leucine uptake by MCF-7 but not by MDA-MB-231 cells. L-leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on L-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 degrees C. There was, however, a significant efflux of L-leucine under zero-trans conditions which was also temperature-sensitive. L-glutamine, L-leucine, D-leucine, L-alanine, AIB and L-lysine all trans-stimulated L-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, D-alanine and L-proline had little or no effect. The anti-cancer agent melphalan inhibited L-leucine uptake by MDA-MB-231 cells but had no effect on L-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for L-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

14.
Novel moxifloxacin-copper complexes were synthesized, characterized and screened for anti-proliferative and apoptosis-inducing activity against multiple human breast cancer cell lines (hormone-dependent MCF-7 and T47D as well as hormone-independent MDA-MB-231 and BT-20). The results indicated that the parent compound moxifloxacin (1) does not exert any inhibitory activity against breast cancer cell lines examined. On the other hand, the copper conjugate 2 and its nitrogen adducts 3-5 exerted growth inhibitory and apoptosis-inducing activity against breast cancer cell lines without any substantial effect on non-tumorigenic breast epithelial cells MCF-10A at equimolar concentration, suggesting a cancer cell-specific activity. BT-20 cells were more sensitive to compounds 2 and 3, while compounds 4 and 5 exerted significant anti-proliferative and apoptosis-inducing effects on T47D, MDA-MB-231 and BT-20 cell lines. Our results suggest that these novel compounds could be useful for the treatment of breast cancer in the future.  相似文献   

15.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

16.
《Cellular signalling》2014,26(12):2621-2632
Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer.The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line.CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the β-catenin/[phospho]GSK-3β complex as well as the E-cadherin/β-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status.These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism. This potentially implicates an MAO-A-sensitive step in advanced breast cancer and should be borne in mind when considering pharmacological treatment options for co-morbid depression in breast cancer patients.  相似文献   

17.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 microM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号