首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently we have studied the secretion pattern of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2) in tobacco protoplast using the protein fusions, secGFP-PMEI1 and PGIP2-GFP. Both chimeras reach the cell wall by passing through the endomembrane system but using distinct mechanisms and through a pathway distinguishable from the default sorting of a secreted GFP. After reaching the apoplast, sec-GFP-PMEI1 is stably accumulated in the cell wall, while PGIP2-GFP undergoes endocytic trafficking. Here we describe the final localization of PGIP2-GFP in the vacuole, evidenced by co-localization with the marker Aleu-RFP, and show a graphic elaboration of its sorting pattern. A working model taking into consideration the presence of a regulated apoplast-targeted secretion pathway is proposed.Key words: cell wall trafficking, endocytosis, GPI-anchor, PGIP2, PMEI1, secretion pathway, vacuole fluorescent markerCell wall biogenesis, growth, differentiation and remodeling, as well as wall-related signaling and defense responses depend on the functionality of the secretory pathway. Matrix polysaccharides, synthesized in the Golgi stacks, and cell wall proteins, synthesized in the ER, are packaged into secretory vesicles that fuse with the plasma membrane (PM) releasing their cargo into the cell wall. Also the synthesis and deposition of cellulose itself are driven by the endomembrane system which controls the assembly, within the Golgi, and the export to the plasma membrane of rosette complexes of cellulose synthase.1 Secretion to the cell wall has always been considered a default pathway2 but recent studies have evidenced a complex regulation of wall component trafficking that does not seem to follow the default secretion model. Recent evidence that several cell wall proteins are retained in the Golgi stacks until specific signals at the N-terminal domain are proteolitically removed is a case in point.35 Moreover, it has previously been reported that secretion of exogenous marker proteins (secGFP and secRGUS) and cell wall polysaccharides reach the PM through different pathways.6 More recently, we have reported that cell wall protein trafficking also occurs through mechanisms distinguishable from that of a secreted GFP suggesting that more complex events than the mechanisms of bulk flow control cell wall growth and differentiation.7 To follow cell wall protein trafficking we used a Phaseolus vulgaris polygalacturonase inhibitor protein (PGIP2) and an Arabidopsis pectin methylesterase inhibitor protein (PMEI1) fused to GFP (PGIP2-GFP and secGFP-PMEI1). Both apoplastic proteins are involved in the remodeling of pectin network with different mechanisms. PGIP2 specifically inhibits exogenous fungal polygalacturonases (PGs) and is involved in the plant defense mechanisms against pathogenic fungi.8,9 PMEI1 counteracts endogenous PME and takes part in the physiological synthesis and remodeling of the cell wall during growth and differentiation.10,11 The specific functions of the two apoplastic proteins seem to be strictly related to the distinct mechanisms that control their secretion and stability in the cell wall. In fact, while secGFP-PMEI1 moves through ER and Golgi stacks linked to a glycosyl phosphatidylinositol (GPI)-anchor, PGIP2-GFP moves as a cargo soluble protein. Furthermore, secGFP-PMEI1 is stably accumulated in the cell wall, while PGIP2-GFP, over the time, is internalized into endosomes and targeted to vacuole, likely for degradation. After reaching the cell wall, the different fate of the two proteins seems to be strictly related to the presence/absence of their physiological counteractors. PMEI regulates the demethylesterification of homogalacturonan by inhibiting pectin methyl esterase (PME) activity through the formation of a reversible 1:1 complex which is stable in the acidic cell wall environment.12 Stable wall localization of PMEI1 is likely related to its interaction with endogenous PME, always present in the wall. Unlike PMEs, fungal polygalacturonases (PGs), the physiological interactors of PGIP2, are present in the cell wall only during a pathogen attack. The absence of PGs may determine PGIP2 internalization. Internalization events have been already reported for PM proteins,1316 while cell wall protein internalization is surely a less well-known event. To date, only internalization of an Arabidopsis pollen-specific PME4,5,17 and PGIP2 7 has been reported.To further confirm the internalization of PGIP2-GFP and its final localization into the vacuole, we constructed a red fluorescent variant (RFP) of the green fluorescent marker protein that accumulates in lytic or acidic vacuole because of the barley aleurain sorting determinants (Aleu-RFP).18 The localization of PGIP2-GFP was compared to that of Aleu-RFP by confocal microscopy in tobacco protoplasts transiently expressing both fusions. Sixty hours after transformation, PGIP2-GFP labeled the central vacuole as indicated by complete co-localization with the vacuolar marker (Fig. 1A–D). Instead, at the same time point, secGFP-PMEI1 still labeled the cell wall (Fig. 1E–H) and never reached the vacuolar compartment. To summarize PGIP2-GFP secretion pattern, a graphic elaboration of confocal images is reported describing the sorting of PGIP2GFP in tobacco protoplast (Fig. 1I). The protein transits through the endomembrane system (green) and reaches the cell wall which is rapidly regenerating as evidenced by immunostaining with the red monoclonal antibody JIM7 that binds to methylesterified pectins.19 PGIP2-GFP is then internalized in endosomes, labeled in yellow because of the co-localization with the styryl dye FM4-64, a red marker of the endocytic pathway.Open in a separate windowFigure 1PGIP2-GFP, but not secGFP-PMEI1, is internalized and reaches the vacuole in tobacco leaf protoplasts. (A) Approximately 60 h after transformation, PGIP2-GFP labeled the central vacuole as indicated by co-localization with the vacuole marker Aleu-RFP (B). (C) Merged image of (A and B). (D) Differential interference contrast (DIC) image of (A–C). On the contrary, secGFP-PMEI1 still labeled cell wall (E). (F) No co-localization is present in the vacuole labeled by Aleu-RFP. (G) Merged image of (E and F). (H) DIC image of (E–G). (I) Graphic elaboration of confocal images describing the sorting of PGIP2. The protein is sorted by the endomembrane system (green) to the cell wall (red) that is regenerated by the protoplast. Lacking the specific ligand, it is then internalized in endosome (yellow). Details are reported in the text.In Figure 2 we propose a model of the mechanism of secGFP-PMEI1 and PGIP2-GFP secretion derived from the different lines of evidence previously reported in reference 7. SecGFPPMEI1 (Fig. 2-1), but not PGIP2-GFP (Fig. 2-2), carries a GPI-anchor, required for its secretion to the cell wall. When the anchorage of GPI is inhibited by mannosamine (Fig. 2-a) or by the fusion of GFP to the C-terminus of PMEI1 (Fig. 2-b), the two non-anchored proteins accumulate in the Golgi stacks. Evidence of retention in Golgi stacks has already been reported for other two cell wall proteins.35 Unlike secGFP-PMEI1, PGIP2-GFP is not stably accumulated in the cell wall and undergoes endocytic trafficking (Fig. 2-3). PGIP2-GFP internalization, likely due to the absence of PGs, might also be related with its ability to interact with homogalacturonan and oligogalacturonides,20 which have been reported to internalize21,22 (Fig. 2-4). Since SYP 121, a Qa-SNARE, is involved in the default secretion of secGFP,23 but not in secretion of PGIP2-GFP and secGFP-PMEI1, trafficking mechanisms underlying secretion into the apoplast are likely different from those underlying the default route (Figs. 2-5). Taken as a whole, evidence suggests the existence of currently undefined signals that control apoplast-targeted secretion.Open in a separate windowFigure 2Schematic illustration for secGFP-PMEI1 and PGIP2-GFP trafficking. See text for details.  相似文献   

3.
Intracellular components in methyl jasmonate (MeJA) signaling remain largely unknown, to compare those in well-understood abscisic acid (ABA) signaling. We have reported that nitric oxide (NO) is a signaling component in MeJA-induced stomatal closure, as well as ABA-induced stomatal closure in the previous study. To gain further information about the role of NO in the guard cell signaling, NO production was examined in an ABA- and MeJA-insensitive Arabidopsis mutant, rcn1. Neither MeJA nor ABA induced NO production in rcn1 guard cells. Our data suggest that NO functions downstream of the branch point of MeJA and ABA signaling in Arabidopsis guard cells.Key words: abscisic acid, Arabidopsis thaliana, guard cells, methyl jasmonate, nitric oxideStomatal pores that are formed by pairs of guard cells respond to various environmental stimuli including plant hormones. Some signal components commonly function in MeJA- and ABA-induced stomatal closing signals,1 such as cytosolic alkalization, ROS generation and cytosolic free calcium ion elevation. Recently, we demonstrated that NO functions in MeJA signaling, as well as ABA signaling in guard cells.2NO production by nitric oxide synthase (NOS) and nitrate reductase (NR) plays important roles in physiological processes in plants.3,4 It has been shown that NO functions downstream of ROS production in ABA signaling in guard cells.5 NO mediates elevation of cytosolic free Ca2+ concentration ([Ca2+]cyt), inactivation of inward-rectifying K+ channels and activation of S-type anion channels,6 which are known to be key factors in MeJA- and ABA-induced stomatal closure.2,79It has been reported that ROS was not induced by MeJA and ABA in the MeJA- and ABA-insensitive mutant, rcn1 in which the regulatory subunit A of protein phosphatase 2A, RCN1, is impaired.7,10 We examined NO production induced by MeJA and ABA in rcn1 guard cells (Fig. 1). NO production by MeJA and ABA was impaired in rcn1 mutant (p = 0.87 and 0.25 for MeJA and ABA, respectively) in contrast to wild type. On the other hand, the NO donor, SNP induced stomatal closure both in wild type and rcn1 mutant (data not shown). These results are consistent with our previous results, i.e., NO is involved in both MeJA- and ABA-induced stomatal closure and functions downstream of the branching point of MeJA and ABA signaling in Arabidopsis guard cells.7 Our finding implies that protein phosphatase 2A might positively regulate NO levels in guard cells (Fig. 2).Open in a separate windowFigure 1Impairment of MeJA- and ABA-induced NO production in rcn1 guard cells. (A) Effects of MeJA (n = 10) and ABA (n = 9) on NO production in wild-type guard cells. (B) Effects of MeJA (n = 7) and ABA (n = 7) on NO production in rcn1 guard cells. The vertical scale represents the percentage of diaminofluorescein-2 diacetate (DAF-2 DA) fluorescent levels when fluorescent intensities of MeJA- or ABA-treated cells are normalized to control value taken as 100% for each experiment. Each datum was obtained from at least 30 guard cells. Error bars represent standard errors. Significance of differences between data sets was assessed by Student''s t-test analysis in this paper. We regarded differences at the level of p < 0.05 as significant.Open in a separate windowFigure 2A model of signal interaction in MeJA-induced and ABA-induced stomatal closure. Neither MeJA nor ABA induces ROS production, NO production, IKin and stomatal closure in rcn1 mutant. These results suggest that NO functions downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

4.
5.
Some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The specific labelling of the synergid cells and its filiform apparatus, which are the cells responsible for pollen tube attraction, and also the specific labelling of the micropyle and micropylar nucellus, which constitutes the pollen tube entryway into the embryo sac, are quite indicative of this role. We also discuss the possibility that AGPs in the sperm cells are probably involved in the double fertilization process.Key words: Arabidopsis, arabinogalactan proteins, AGP 6, gametic cells, pollen tube guidanceThe selective labelling obtained by us with monoclonal antibodies directed to the glycosidic parts of AGPs, in Arabidopsis and in other plant species, namely Amaranthus hypochondriacus,1 Actinidia deliciosa2 and Catharanthus roseus, shows that some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The evaluation of the selective labelling obtained with AGP-specific monoclonal antibodies (Mabs) JIM 8, JIM 13, MAC 207 and LM 2, during Arabidopsis pollen development, led us to postulate that some AGPs, in particular those with sugar epitopes identified by JIM 8 and JIM 13, can be classified as molecular markers for generative cell differentiation and development into male gametes.Likewise, we also postulated that the AGP epitopes recognized by Mabs JIM 8 and JIM 13 are also molecular markers for the development of the embryo sac in Arabidopsis thaliana. Moreover, these AGP epitopes are also present along the pollen tube pathway, predominantly in its last stage, the micropyle, which constitutes the region of the ovule in the immediate vicinity of the pollen tube target, the embryo sac.3We have recently shown the expression of AGP genes in Arabidopsis pollen grains and pollen tubes and also the presence of AGPs along Arabidopsis pollen tube cell surface and tip region, as opposed to what had been reported earlier. We have also shown that only a subset of AGP genes is expressed in pollen grain and pollen tubes, with prevalence for Agp6 and Agp11, suggesting a specific and defined role for some AGPs in Arabidopsis sexual reproduction (Pereira et al., 2006).4Therefore we continued by using an Arabidopsis line expressing GFP under the command of the Agp6 gene promoter sequence. These plants were studied under a low-power binocular fluorescence microscope. GFP labelling was only observed in haploid cells, pollen grains (Fig. 1) and pollen tubes (Fig. 2); all other tissues clearly showed no labelling. These observations confirmed the specific expression of Agp6 in pollen grains and pollen tubes. As shown in the Figures 1 and and2,2, the labelling with GFP is present in all pollen tube extension, so probably, AGP 6 is not one of the AGPs identified by JIM 8 and JIM 13, otherwise GFP light emission would localize more specifically in the sperm cells.5 So we think that MAC 207 which labels the entire pollen tube wall (Fig. 3) may indeed be recognizing AGP6, which seems to be expressed in the vegetative cell. In other words, the specific labelling obtained for the generative cell and for the two male gametes, is probably given by AGPs that are present in very low quantities, apparently not the case for AGP 6 or AGP 11.Open in a separate windowFigure 1Low-power binocular fluorescence microscope image of an Arabidopsis flower with the AGP 6 promoter:GFP construct. The labelling is evident in pollen grains that are being released and in others that are already in the stigma papillae.Open in a separate windowFigure 2Low-power binocular fluorescence microscope image of an Arabidopsis ovary with the AGP6 promoter:GFP construct. The ovary was partially opened to show the pollen tubes growing in the septum, and into the ovules. The pollen tubes are also labelled by GFP.Open in a separate windowFigure 3Imunofluorescence image of a pollen tube growing in vitro, and labeled by MAC 207 monoclonal antibody. The labelling is evident all over the pollen tube wall.After targeting an ovule, the pollen tube growth arrests inside a synergid cell and bursts, releasing the two sperm cells. It has recently been shown that sperm cells, for long considered to be passive cargo, are involved in directing the pollen tube to its target. In Arabidopsis, HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to the ovules.6 The same could be happening with the AGPs identified in the sperm cells by JIM 8 and JIM 13. We are now working on tagging these AGPs and using transgenic plants aiming to answer to such questions.Pollen tube guidance in the ovary has been shown to be in the control of signals produced by the embryo sac. When pollen tubes enter ovules bearing feronia or sirene mutations (the embryo sac is mutated), they do not stop growing and do not burst. In Zea mays a pollen tube attractant was recently identified in the egg apparatus and synergids.7 Chimeric ZmEA1 fused to green fluorescent protein (ZmEA1:GFP) was first visible within the filiform apparatus and later was localized to nucellar cell walls below the micropylar opening of the ovule. This is the same type of labelling that we have shown in Arabidopsis ovules, using Mabs JIM 8 and JIM 13. We are now involved in the identification of the specific AGPs associated with the labellings that we have been showing.  相似文献   

6.
Reactive oxygen species (ROS) fulfil many functions in plants. They have a signaling role in several physiological mechanisms, but they are also directly involved as substrates in important reactions, especially in the apoplast. Two ROS, superoxide and hydrogen peroxide, were shown to exhibit a typical accumulation pattern in the Arabidopsis root apex. While hydrogen peroxide is mainly present in the cell wall of fully elongated cells in the region of root hair formation, superoxide accumulation roughly coincides with the transition zone, between the meristem and the fast elongating zone. Developing lateral roots also exhibit a strong superoxide labeling with the same localization.Key Words: superoxide, hydrogen peroxide, cell elongation, transition zone, nitroblue tetrazoliumIn a recent work,1 we have shown that superoxide radical and hydrogen peroxide have different accumulation sites in Arabidopsis root tip. Hydrogen peroxide is mainly present in a region identified as “differentiation zone”, according to the nomenclature used by Scheres et al.2 This localization fits well with the role that was assigned to this ROS in the formation of root hairs.3 This hypothesis was strengthened by the fact that umbelliferone, which promotes the in vitro and in vivo formation of hydrogen peroxide by peroxidases, induces the formation and the elongation of root hairs. In contrast, potassium iodide, a H2O2 scavenger, prevents the formation of root hairs, but does not completely abolished their initiation.As for superoxide radical, it accumulates mainly in apoplast of cells ranging from the proximal part of root meristem to the point where cells initiate their fast elongation. This localization is in agreement with a role of superoxide in the cell elongation process.1 This conclusion can be refined, taking into account the work of Baluška and coll.4,5 Using various functional and structural criteria, these authors identified four distinct zones in the root apex of Arabidopsis. They introduced an additional zone, between the meristem and the fast elongating cells, named “transition zone”. This region comprises cells which do not divide any more and are preparing their elongation. A reappraisal of the localization of superoxide accumulation in the light of this classification could suggest that this ROS is actually mainly associated with this transition zone, rather than with the beginning of the elongation zone. Figure 1 shows an Arabidopsis root stained for the presence of superoxide with nitroblue tetrazolium. It appears that the strong superoxide staining ranges from about 80 to 250 µm away from the root tip. The respective sizes of the various zones somewhat differ from the sizes reported (in ref. 5). It is difficult to precisely determine the border between the meristem and the transition zone, which should be around 120 µm. The fast elongation zone begins at about 240 µm. Fast elongating cells exhibit only a slight superoxide staining in their cell wall. Therefore, it appears that superoxide accumulates mainly in the wall of cells preparing their rapid elongation. It has been reported that cells in the transition zone undergo several modifications to prepare their growth. This includes reactions leading to cell wall loosening.6,7 The presence of superoxide in the cell wall of those cells could participate in the onset of the loosening process, for example by interacting with peroxidases to produce hydroxyl radicals.8Open in a separate windowFigure 1Distribution of superoxide radical in the root of a 7-day old Arabidopsis seedling stained with nitroblue tetrazolium. Growth conditions and staining procedure were as described (in ref. 1). The scale indicates µm, starting from the root cap junction. The picture was taken with a MZ 16 Leica stereomicroscope. Arrowheads point to root hairs in formation. Black arrow, basal limit of meristem. White arrow, onset of the fast elongation zone.When roots get older, the intensity of superoxide staining in the main root tip decreases, while the apex of the newly formed lateral roots exhibits a stronger reaction (Fig. 2). This could be related to the important growth potential of young lateral roots. The emerging root primordium is usually clearly positive (Fig. 2A) and in a fully formed lateral root, superoxide staining is concentrated in a zone between the meristem and elongated cells, most likely corresponding to the transition zone (Fig. 2B). In conclusion, superoxide radical seems to accumulate in the wall of cells preparing their elongation in the transition zone of Arabidopsis root apex.Open in a separate windowFigure 2Detection of superoxide radical by nitroblue tetrazolium in a lateral root primordium marked by an arrow (A) and in a developing lateral root (B). mr, main root. Scale bar: 100 µm.  相似文献   

7.
8.
9.
A primary function of the spindle apparatus is to segregate chromosomes into two equal sets in a dividing cell. It is unclear whether spindles in different cell types play additional roles in cellular regulation. As a first step in revealing new functions of spindles, we investigated spindle morphology in different cell types in Arabidopsis roots in the wild-type and the cytokinesis defective1 (cyd1) mutant backgrounds. cyd1 provides cells larger than those of the wild type for testing the cell size effect on spindle morphology. Our observations indicate that cell type (shape), not cell size, is likely a factor affecting spindle morphology. At least three spindle types were observed, including small spindles with pointed poles in narrow cells, large barrel-shaped spindles (without pointed poles) in wide cells, and spindles intermediate in pole focus and size in other cells. We hypothesize that the cell-type-associated spindle diversity may be an integral part of the cell differentiation processes.Key words: spindle pole, microtubule, morphogenesis, cell type, metaphaseThe cellular apparatus for chromosome segregation during mitosis is typically described as a spindle composed of microtubules and microtubule-associated proteins. Research on the structure and function of the spindle is usually conducted under the assumption that spindles are structurally the same or alike in different cell types in an organism. If the assumption is true, it would indicate that either the intracellular conditions in different dividing cells are very similar or the assembly and maintenance of the spindle are insensitive to otherwise variable intracellular conditions. But experimental evidence related to this assumption is relatively sparse.The root tip in Arabidopsis, as in other higher plants, contains dividing cells of different shapes and sizes. These cells include both meristem initial and derivative cells, with the former and latter being proximal and distal to the quiescent center, respectively.1 The diversity in dividing cells in the root tip provides an opportunity for testing whether the spindles also exhibit diversity in morphology. To visualize the spindles at the metaphase stage in the root tip cells, we conducted indirect immunofluorescence labeling of the β-tubulin in single cells prepared from wild-type Arabidopsis (in Col-0 background) root tips as previously described in references 2 and 3. The spindles in cells of different morphologies were then observed under a confocal laser scanning microscope.3 Three types of spindle were detected. The first type (Fig. 1A) was the smallest in width and length and had the most-pointed poles among the three types. The second type (Fig. 1B) was wider and longer than the first type but with less-pointed poles than the first type. The third type (Fig. 1C) was similar in height to the second type but lacked the pointed poles. In fact, the third type is shaped more like a barrel than a spindle. The first type was found in cells narrow in the direction parallel to the equatorial plane of the spindle, a situation opposite to that of the third type whose cells were wide in the equatorial direction. The wide cells containing the barrel-shaped spindles likely belonged to the epidermal layer in the root tip.1 The second type was found in cells intermediate in width. Examples of metaphase spindles morphologically resembling the three types of spindles in Arabidopsis root can also be found in a previous report by Xu et al. even although spindle diversity was not the subject of the report.4 In Xu et al.''s report, type 1- or 2-like metaphase spindles can be identified in Figures 2B and 3A, and type 3-like metaphase spindles can be identified in Figures 1A and 3B. These observations indicate that at least three types of spindles exist in the root cells.Open in a separate windowFigure 1Spindles in wild-type root cells. (A) Type-1 spindle. (B) Type-2 spindle. (C) Type-3 spindle. The spots without fluorescence signals in the middle of the spindles are where the chromosomes were located. Scale bar for all the figures = 20 µm.Open in a separate windowFigure 2Spindles in cyd1 root cells. (A) Type-1 spindle. Arrows indicate the upper and lower boundaries of the cell. (B and C) Two type-2 spindles. (D and E) Two type-3 spindles. (F) DAPI-staining image corresponding to (E), showing chromosomes at the equatorial plane. Scale bar for the images = 20 µm.The above observations suggest that either the cell size or the cell type (shape) might be a factor in the type of spindle found in a specific cell. To further investigate the relationship between cell morphology and spindle morphology, we studied metaphase spindles in root cells of the cytokinesis defective1 (cyd1) mutant.5 Because the root cells in cyd1 were larger than corresponding cells in the wild type, presumably due to abnormal polyploidization prior to the collection of the root cells,5,6 this investigation might reveal a relationship between increasing cell size and altered spindle morphology. A pattern of different spindle types in different cell types similar to that in the wild type was observed in cyd1 (Fig. 2). Figures 2A–C show narrow cells that contained spindles with pointed poles even though the spindles differed in size and focus. Figure 2D shows a barrel-shaped spindle in a wide cell, resembling Figure 1C in overall appearance. The large number of chromosomes at metaphase (more than the diploid number of 10) in Figure 2F indicates that the cells in Figure 2 were polyploid. These figures thus demonstrate that the enlargement in cell size did not alter the pattern of types 1 and 2 spindles in narrow cells, as well as type 3 spindles in wide cells. Moreover, the edges of the spindles in Figure 2B and E were similarly distanced to the cell walls in the equatorial plane, and yet they differ greatly in shape with the former being type 2 and the latter being type 3. This finding argues against that the cell width in the equatorial direction dictates the spindle shape. On the other hand, the cells in Figure 2B and E are obviously of different types. Taken together, these observations suggest that the spindle diversity in both wild type and cyd1 is associated with cell-type diversity.It is unclear whether the different spindle types have different functions in their respective cell types, in addition to the usual role for chromosome segregation. One possibility is that, at the ensuing telophase, the pointed spindles result in compact chromosomal congregation at the poles whereas the barrel-shaped spindles result in loose chromosomal congregation at the poles, which in turn may differentially affect the shape of the subsequently formed daughter nuclei and their organization. Different nuclear shape and organization are likely to be integrated into the processes that confer cell differentiation.  相似文献   

10.
Plant VAPYRINs are required for the establishment of arbuscular mycorrhiza (AM) and root nodule symbiosis (RNS). In vapyrin mutants, the intracellular accommodation of AM fungi and rhizobia is blocked, and in the case of AM, the fungal endosymbiont cannot develop arbuscules which serve for nutrient exchange. VAPYRINs are plant-specific proteins that consists of a major sperm protein (MSP) domain and an ankyrin domain. Comparison of VAPYRINs of dicots, monocots and the moss Physcomitrella patens reveals a highly conserved domain structure. We focused our attention on the ankyrin domain, which closely resembles the D34 domain of human ankyrin R. Conserved residues within the petunia VAPYRIN cluster to a surface patch on the concave side of the crescent-shaped ankyrin domain, suggesting that this region may represent a conserved binding site involved in the formation of a protein complex with an essential function in intracellular accommodation of microbial endosymbionts.Key words: VAPYRIN, arbuscular mycorrhiza, petunia, symbiosis, glomus, ankyrin, major sperm protein, VAPPlants engage in mutualistic interactions such as root nodule symbiosis (RNS) with rhizobia and arbuscular mycorrhiza (AM) with Glomeromycotan fungi. These associations are referred to as endosymbioses because they involve transcellular passage through the epidermis and intracellular accommodation of the microbial partner within root cortical cells of the host.1,2 Infection by AM fungi and rhizobia is actively promoted by the plant and requires the establishment of infection structures namely the prepenetration apparatus (PPA) in AM and a preinfection thread in RNS, respectively.35 In both symbioses the intracellular microbial accommodation in epidermal and root cortical cells involves rebuilding of the cytoskeleton and of the entire membrane system.68 Recently, intracellular accommodation of rhizobia and AM fungi, and in particular morphogenesis of the AM fungal feeding structures, the arbuscules, was shown to depend on the novel VAPYRIN protein.911VAPYRINs are plant-specific proteins consisting of two protein-protein interaction domains, an N-terminal major sperm protein (MSP) domain and a C-terminal ankyrin (ANK) domain. MSP of C. elegans forms a cytoskeletal network required for the motility of the ameboidal sperm.12 MSP domains also occur in VAP proteins that are involved in membrane fusion processes in various eukaryotes.13 The ANK domain, on the other hand, closely resembles animal ankyrins which serve to connect integral membrane proteins to elements of the spectrin cytoskeleton,14 thereby facilitating the assembly of functional membrane microdomains in diverse animal cells.15 Ankyrin repeats exhibit features of nano-springs, opening the possibility that ankyrin domains may be involved in mechanosensing.16 Based on these structural similarities, VAPYRIN may promote intracellular accommodation of endosymbionts by interacting with membranes and/or with the cytoskeleton. Indeed, VAPYRIN protein associates with small subcellular compartments in petunia and in Medicago truncatula.9,10Ankyrin repeats typically consist of 33 amino acids, of which 30–40% are highly conserved across most taxa. These residues confer to the repeats their basic helix-turn-helix structure.17 Ankyrin domains often consist of arrays of several repeats that form a solenoid with a characteristic crescent shape.17 Besides the ankyrin-specific motiv-associated amino acids there is little conservation between the ankyrin domains of different proteins, or between the individual repeats of a given ankyrin domain,17 a feature that was also observed in petunia VAPYRIN (Fig. 1A).9 However, sequence comparison of VAPYRINs from eight dicots, three monocots and the moss Physcomitrella patens revealed a high degree of sequence conservation beyond the ankyrin-specific residues (Fig. 1B and Sup. Fig. S1). When the degree of conservation was determined for the individual ankyrin repeats among all the 12 species, it appeared that repeats 7, 9 and 10 exhibited particularly high conservation (Fig. 1C).Open in a separate windowFigure 1Sequence analysis and phylogeny of VAPYRIN from diverse plants. (A) Predicted amino acid sequence of the petunia VAPYRIN protein PAM1. The 11 repeats of the ankyrin domain are aligned, and the ankyrin consensus sequence is shown below the eleventh ankyrin repeat (line c). Conserved residues that are characteristic for ankyrin repeats (Mosavi et al. 2004)17 are depicted in bold face. (B) Unrooted phylogenetic tree representing the VAPYRINs of eight dicot species (Petunia hybrida, Solanum lycopersicon, Solanum tuberosum, Vitis vinifera, Populus trichocarpa, Ricinus communis, Medicago truncatula and Glycine max) three monocot species (Sorghum bicolor, Zea mays and Oryza sativa), and the moss Physcomitrella patens. (C) Degree of conservation of the individual ankyrin repeats of VAPYRIN. Schematic representation of the MSP domain as N-terminal barrel-shaped structure, and of the individual ankyrin repeats as pairs of alpha-helices. An additional loop occurring only in monocots (grass-loop) is inserted above repeat 4, and the deletion between repeat 7 and 8 is indicated (gap). This latter feature is common to all VAPYRIN proteins. The percentage of amino acid residues that are identical in at least 11 of the 12 VAPYRINS is given below the MSP domain and the eleven ankyrin repeats. The box highlights repeats 7–10 which contribute to the predicted binding site (compare with Figs. 3 and and44).Sequence comparison of the eleven repeats of all the twelve plant species revealed that the individual repeats clustered according to their position in the domain, rather than according to their origin (plant species) (Fig. 2). This shows that the repeats each are well conserved across species, but show little similarity among each other within a given VAPYRIN protein. The higher conservation of repeats 9 and 10 was reflected by the compact appearance of the respective branches, in which the monocot and moss sequences were nested closely with the dicot sequences, compared to other repeats, where the branches appeared fragmented between monocots and dicots, and where the P. patens sequence fell out of the branch as in the case of repeats 4–6 (Fig. 2). Taken together, this points to an old evolutionary origin of the entire ankyrin domain in lower land plants, with no subsequent rearrangement of ankyrin repeats.Open in a separate windowFigure 2Phylogenetic analysis of the individual ankyrin repeats of VAPYRIN. Phylogenetic representation of an alignment of all the 11 repeats of the 12 VAPYRINs compared in Figure 1B and C. The repeats cluster according to their position within the domain, rather than to their origin (plant species). Numbers indicate the position of the repeats within the domain (compare with Fig. 1C). P. patens repeats are highlighted (small circles) for clarity. The monocot repeat 4 sequences (boxed) are remote from the remaining repeat 4 sequences because of the grass loop (compare with Fig. 1C).Ankyrin domains function as protein-protein interaction domains,17 in which the residues on the surface are involved in the binding of their protein partners.14 The fact that repeats 9 and 10 exhibited particularly high levels of conservation across species from moss to angiosperms indicated that this region may contain functionally important residues. Within repeat 10, sixteen amino acid positions were identical in >90% of the analyzed species (Fig. 3A and grey bars). Nine of those represent residues that are characteristic for ankyrin repeats (red letters) and determine their typical 3D shape.17 These residues are considered ankyrin-specific, and are unlikely to be involved in a VAPYRIN-specific function. The remaining seven highly conserved residues in repeat 10, however, are VAPYRIN-specific, since they have been under positive selection, without being essential for the basic structure of the ankyrin repeat. Ankyrin-specific and VAPYRIN-specific residues where identified throughout the entire ankyrin domain (Sup. Fig. 1), and subsequently mapped on a 3-dimensional model of petunia VAPYRIN to reveal their position in the protein (Fig. 3B–G). The ankyrin-specific residues were found to be localized primarily to the interior of the ankyrin domain, with the characteristic glycines (brown) marking the turns between helices and loops (Fig. 3B, D and F, compare with A). In contrast, the VAPYRIN-specific residues were localized primarily on the surface of the ankyrin domain (Fig. 3C, E and G). A prominent clustering of VAPYRIN-specific residues was identified on the concave side of the crescent-shaped ankyrin domain comprising repeats 7–10 close to the gap (Figs. 3G and and44). This highly conserved VAPYRIN-specific region contains several negatively and positively charged residues (D, E and K, R, respectively) and aromatic residues (W, Y, F), which may together form a conserved binding site for an interacting protein.Open in a separate windowFigure 33D-Mapping of conserved positions within the ankyrin domain of VAPYRIN. (A) Conserved amino acid residues were evaluated for ankyrin repeat 10 of petunia VAPYRIN as an example. The degree of conservation between the 12 VAPYRINs analyzed in Figures 1B and and22 is depicted with grey bars. Average conservation between all the 132 ankyrin repeats of the 12 VAPYRIN sequences is shown with black bars. Residues that are conserved in all 132 repeats (red letters) define the ankyrin consensus sequence, which confers to the repeats their characteristic basic structure.17 Residues that are >90% conserved but are not part of the basic ankyrin sequence (highlighted with asterisks) are VAPYRIN-specific and may therefore have been conserved because of their specific function in VAPYRIN. Arrows indicate the characteristic antiparallel helices, the turns are marked by conserved glycine residues (underlined; compare with B, D and F). (B–G) 3D-models of the petunia VAPYRIN PAM1. Conserved amino acid residues were color-coded according to their physico-chemical properties (http://life.nthu.edu.tw/∼fmhsu/rasframe/SHAPELY.HTM) with minor modification (see below). In (B, D and F) the ankyrin-specific residues are highlighted (corresponding to the bold letters in Fig. 1A). In (C, E and G), the VAPYRIN-specific residues are highlighted. Note the patch of high conservation on the concave side of the crescent-shaped ankyrin domain between repeats 7–10 next to the gap. (B–E) represent respective side views of the ankyrin domain, (F and G) exhibit the concave inner side of the domain. Color code: Bright red: aspartic acid (D), glutamic acid (E); Yellow: cysteine (C); Blue: lysine (K), arginine (R); Orange: serine (S), threonine (T); Dark blue: phenylalanine (F), tyrosin (Y); Brown: glycine (G); Green: leucin (L), valine (V), isoleucin (I), alanine (A); Lilac: tryptophane (W); Purple: histidine (H); Pink: proline (P).Open in a separate windowFigure 4The highly conserved surface area in domain 8–10 of the ankyrin domain of petunia VAPYRIN. Close-up of the highly conserved region of petunia PAM1 as shown in Figure 3G. Amino acids were color-coded as in Figure 3 and their position in the amino acid sequence is indicated (compare with Sup. Fig. 1).In this context, it is interesting to note that human ankyrin R also contains a binding surface on the concave side of the D34 domain for the interaction with the CBD3 protein.14 Consistent with an essential function of the C-terminal third of the ankyrin domain, mutations that abolish this relatively short portion of VAPYRIN, have a strong phenotype, indicating that they may represent null alleles.9 Based on this collective evidence, we hypothesize that repeats 7–10 are involved in the formation of a protein complex that is essential for intracellular accommodation of rhizobia and AM fungi. Biochemical and genetic studies are now required to identify the binding partners of VAPYRINs, and to elucidate their role in plant endosymbioses.  相似文献   

11.
12.
Exo- and endocytotic membrane trafficking is an essential process for transport of secretory proteins, extracellular glycans, transporters and lipids in plant cells. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco BY-2 cells as a model system, we recently demonstrated that SCAMP2 positive structures containing secretory materials are transported from the Golgi apparatus to the plasma membrane (PM) and/or cell plate. This structure is consisted with clustered vesicles and was thus named the secretory vesicle cluster (SVC). Here, we have utilized the reversible photoswitching fluorescent protein Dronpa1 to trace the movement of SCAMP2 on the PM and cell plate. Activated SCAMP2-Dronpa fluorescence on the PM and cell plate moved into the BY-2 cells within several minutes, but did not spread around PM. This is consistent with recycling of SCAMP2 among endomembrane compartments such as the TGN, PM and cell plate. The relationship between SVC-mediated trafficking and exo- and endocytosis of plant cells is discussed taking into account this new data and knowledge provided by recent reports.Key words: SVC, secretory vesicle cluster, secretory carrier membrane protein 2, SCAMP2, exocytosis, endocytosis, dronpa, trans-Golgi network, Golgi apparatus, pectin, secretory protein, plasma menbrane, endosome, endomembrane systemExo- and endocytosis are essential events for cellular division and expansion. During exocytosis, lipids, proteins and polysaccharides are synthesized and/or modified in the Golgi apparatus and sorted into secretory vesicles at the trans-Golgi network (TGN) for transport to the PM2 or extracellular space. Secretory carrier membrane proteins (SCAMPs) are a group of transmembrane proteins that plays vesicle trafficking between Golgi apparatus and PM in higher eukaryotic cells.3 Recently it was reported that in BY-2 cells, the rice SCAMP1 is localized to the PM and clathrin-coated tubularvesicular structures that were likely the early endosomal compartment.4 The same protein is also targeted to the cell plate in dividing cells.5 We have recently reported that another member of the SCAMP family, SCAMP2 from tobacco, is localized to the TGN, PM, cell plate and previously uncharacterized SVC organelles, which are an intermediate organelle between the TGN and PM.6Both SCAMP1 and SCAMP2 appear to be recycled between the PM and intracellular compartments. This was suggested by data using stelyl dye FM4-64 as an endocytotic marker, fluorescent-tagged SCAMP proteins and protein trafficking inhibitors such as brefeldin A and 2,3-butanedione monoxime. We reported that SCAMP2 is exported to the PM from dotted structures in the cells, and back from the PM via the acto-myosin pathway but do not transport FM4-64 positive early endosome.6 As SCAMP2 did not localize on multivesicular bodies, endocytic vesicles may be directly transported to TGN or Golgi.6 However, this data was obtained using inhibitors that disrupt the trafficking system, and thus we have now investigated the endocytotic transport in the absence of inhibitors.Dronpa is a reversible photo-switching fluorescent protein. Using 488 and 405 nm laser light this protein can be converted between fluorescent and non-fluorescent forms within milliseconds.1 In order to test whether SCAMP2 returned to internal compartments from the PM, and to characterize the initial compartment of endocytosis, we expressed Dronpatagged SCAMP2 (SCAMP2-Dronpa) in tobacco BY-2 cells. The fluorescence of SCAMP2-Dronpa was similar to that for SCAMP2-YFP and -mRFP fusions6 (Fig. 1A, upper part). To visualize the endocytic transport of SCAMP2-Dronpa, we first erased the majority of Dronpa fluorescence by illumination with 488 nm laser and then activated the protein at a part of the PM by 405 nm illumination using confocal laser scanning microscope (LSM) (Fig. 1A, upper right part). The fluorescence was then traced by 30 minutes interval up to 90 minutes (Fig. 1A, lower pictures). SCAMP2 signals at the PM did not spread laterally in the PM and decreased over the time. In parallel, signals were detected in the cytosol and some of them appeared as puncta (Fig. 1A, arrowheads). This observation is consistent with our proposal that SCAMP2 is recycled back into the intracellular compartment from the PM, possibly through the TGN without passing through the early endosome.6Open in a separate windowFigure 1Time-lapse images of BY-2 cells expressing ScamP2-Dronpa. Fluorescence of Dronpa (mBL) tagged ScamP2 in the cells was erased by 488 nm laser and then a spot of Pm (a) or cell plate (B) was activated by 405 nm diode laser. these data were obtained by LSm510 meta, 63x oil lens, Argon laser with 488-nm excitation and a 505 nm LP filter (Zeiss). Arrowheads indicate dotted structures. Bar = 20 μm.During cytokinesis, cell wall materials and membrane proteins accumulate in the cell plate.79 It has been shown that clathrin-coated vesicles (CCVs) and their constituents such as adapter proteins and dynamins are associated with cell plate membrane.10 However, it is not clear whether these molecules on the cell plate are re-used in daughter cells or are degraded at the cell plate. We thus investigated the movement of SCAMP2-Dronpa fluorescence on the cell plate during cytokinesis. Fluorescence of SCAMP2-Dronpa within late metaphase cells was first erased, followed by activation of SCAMP2-Dronpa specifically on the cell plate (Fig. 1B). Following a 15 min of incubation, SCAMP2-Dronpa associated fluorescence on the cell plate moved into intracellular structures within daughter cells. This confirmed our previous observation that SCAMP2 was transported to the trans-Golgi/TGN or intracellular structures from the cell plate during the cytokinesis.6Transmission electron microscope and LSM studies have revealed that CCVs are present in cell plates.10 Recent tomographic observation suggested that early- and late TGNs having CCVs exist not only in the cell plate region but also other places of the plant cell.11 We found that immature SVCs, which might be identical to late TGN, are converted to mature SVCs by budding CCVs.6 Therefore, transport from the Golgi apparatus located inside of the cells to the PM or cell plate is mediated by SVCs, which are generated as immature SVCs from the TGN and converted to mature SVCs by budding CCVs during transport. Eventually, the mature SVC fuses with the PM and/or expanding cell plate (Fig. 2, left), after which CCVs are generated from the expanded cell plate to recycle SCAMPs and other molecules back to the daughter cells.Open in a separate windowFigure 2A model of the exocytotic pathway and SCAMP2 trafficking in plant cells. From the Golgi apparatus or tGn, at least two distinct compartments, such as maSc and SVc are generated for secretion. ScamP2 locates in the SVc and is transported to the Pm or cell plate. thereafter, SCAMP2 is recycled back to the TGN via clathrin-mediated endocytosis.  相似文献   

13.
For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor.1 Upon Nod factor perception a signaling cascade is activated that is also essential for endomycorrhizal symbiosis (Fig. 1). This suggests that rhizobium co-opted the evolutionary far more ancient mycorrhizal signaling pathway in order to establish an endosymbiotic interaction with legumes.2 As arbuscular mycorrhizal fungi of the Glomeromycota phylum can establish a symbiosis with the vast majority of land plants, it is most probable that this signaling cascade is wide spread in the plant kingdom.3 However, Nod factor perception generally is considered to be unique to legumes. Two recent breakthroughs on the evolutionary origin of rhizobium Nod factor signaling demonstrate that this is not the case.4,5 The purification of Nod factor-like molecules excreted by the mycorrhizal fungus Glomus intraradices and the role of the LysM-type Nod factor receptor PaNFP in the non-legume Parasponia andersonii provide novel understanding on the evolution of rhizobial Nod factor signaling.Open in a separate windowFigure 1Schematic representation of the genetically dissected symbiosis signaling pathway. In legumes rhizobium Nod factors and mycorrhizal Myc factors are perceived by distinct receptor complexes. In case of Nod factors these are the LysM-RK type receptors MtLYK3/LjNFR1 and MtNFP/LjNFR5, whereas Myc factors remain to be elucidated. In Parasponia PaNFP fulfils a dual function and acts in both symbioses. The subsequent common signaling pathway consists of several components including a plasma membrane localized LRR-type receptor (MtDMI2/LjSymRK), a cation channel in the nuclear envelope (MtDMI1/LjCASTOR/LjPOLLUX) and subunits of the nuclear pore (NUP85, NUP133), and a nuclear localized complex of calcium calmodulin dependent kinase (CCaMK) and interactor protein MtIPD3/LjCYCLOPS. Downstream of CCaMK the rhizobium and mycorrhiza induced responses bifurcate.Key words: parasponia, legumes, rhizobium, mycorrhizae, Nod factor  相似文献   

14.
We highlight a case on a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophilic infiltrate and thrombus consistent with chronic infarction and torsion. Splenogonadal fusion (SGF) is a rather rare entity, with approximately 184 cases reported in the literature. The most comprehensive review was that of 123 cases completed by Carragher in 1990. Since then, an additional 61 cases have been reported in the scientific literature. We have studied these 61 cases in detail and have included a summary of that information here.Key words: Splenogonadal fusion, Acute scrotumA 10-year-old boy presented with worsening left-sided scrotal pain of 12 hours’ duration. The patient reported similar previous episodes occurring intermittently over the past several months. His past medical history was significant for left hip dysplasia, requiring multiple hip surgeries. On examination, he was found to have an edematous left hemiscrotum with a left testicle that was rigid, tender, and noted to be in a transverse lie. The ultrasound revealed possible polyorchism, with two testicles on the left and one on the right (Figure 1), and left epididymitis. One of the left testicles demonstrated a loss of blood flow consistent with testicular torsion (Figure 2).Open in a separate windowFigure 1Ultrasound of the left hemiscrotum reveals two spherical structures; the one on the left is heterogeneous and hyperdense in comparison to the right.Open in a separate windowFigure 2Doppler ultrasound of left hemiscrotum. No evidence of blood flow to left spherical structure.The patient was taken to the operating room for immediate scrotal exploration. A normalappearing left testicle with a normal epididymis was noted. However, two accessory structures were noted, one of which was torsed 720°; (Figure 3). An inguinal incision was then made and a third accessory structure was noted. All three structures were connected with fibrous tissue, giving a “rosary bead” appearance. The left accessory structures were removed, a left testicular biopsy was taken, and bilateral scrotal orchipexies were performed.Open in a separate windowFigure 3Torsed accessory spleen with splenogonadal fusion.Pathology revealed a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophillic infiltrate and thrombus consistent with chronic infarction and torsion (Figure 4).Open in a separate windowFigure 4Splenogonadal fusion, continuous type with three accessory structures.  相似文献   

15.
16.
Canonical WNT signals play an important role in hair follicle development. In addition to being crucial for epidermal appendage initiation, they control the interfollicular spacing pattern and contribute to the spatial orientation and largely parallel alignment of hair follicles. However, owing to the complexity of canonical WNT signalling and its interconnections with other pathways, many details of hair follicle formation await further clarification. Here, we discuss the recently suggested reaction-diffusion (RD) mechanism of spatial hair follicle arrangement in the light of yet unpublished data and conclusions. They clearly demonstrate that the observed hair follicle clustering in dickkopf (DKK) transgenic mice cannot be explained by any trivial process caused by protein overexpression, thereby further supporting our model of hair follicle spacing. Furthermore, we suggest future experiments to challenge the RD model of spatial follicle arrangement.Key Words: hair follicle, pattern formation, WNT, DKK, KRM, LRPIn order to stimulate the canonical WNT signalling pathway, members of the WNT protein family have to bind to their cognate Frizzled receptors as well as to a co-receptor encoded by Lrp5 and 6, respectively.13 Pathway activation is competitively inhibited by soluble WNT binding proteins such as secreted frizzled related proteins (SFRPs).4,5 Moreover, members of the DKK family bind non-competitively to LRPs;6,7 simultaneous interaction with Kremen (KRM) 1 or 2 causes depletion of WNT co-receptors from the cell surface, thereby inhibiting canonical WNT signals.8Based on previous findings concerning the importance of WNT signalling in hair follicle initiation and orientation,9,10 we recently hypothesised that the pathway may also have an essential role in the spatial arrangement of follicles. Using a combined experimental and computational modelling approach, we provided evidence for WNTs and DKKs controlling interfollicular spacing through a reaction-diffusion mechanism (Fig. 1).11 By confirming the prediction of hair follicle clustering in the presence of moderate DKK overexpression, we demonstrated the biological implementation of a fundamental principle of pattern formation the mathematical basis of which has been described by Alan Turing in the 1950s.12Open in a separate windowFigure 1Schematic of early hair follicle development in mouse and the hypothesised distribution of WNTs and DKKs as the critical regulators of interfollicular spacing. According to the RD hypothesis of Alan Turing, patterning starts with an almost even distribution of activator and inhibitor (solid and dashed lines, respectively) (A, bottom). Transferring the model to murine hair follicle morphogenesis, this molecular pattern is associated with a morphologically unstructured epidermis (A, top); (the underlying dermis is indicated by black spots). Of note, WNTs and DKKs were recently suggested to represent an activator/inhibitor pair in follicle development. In the RD model, small fluctuations in the initially even protein distribution are enhanced and, eventually, give rise to a distinct and stable pattern of activator and inhibitor distribution (B, bottom). This is mainly achieved by an activator controlling expression of its own as well of the inhibitor, an inhibitor antagonising the activator''s action, and an increased mobility of the inhibitor as compared to the activator. Although protein distribution in the developing skin is still hypothetical, the predicted pattern could control hair follicle morphogenesis, the first sign of which are epithelial thickenings (B, top). They stimulate the formation of dermal condensates which become dermal papillae later on. Of note, interfollicular spacing is solely determined by the parameters of the underlying RD mechanism. Hence, upon embryo growth, areas in between previously formed follicles again become capable of hair follicle formation owing to local protein levels (C). While the Turing model cannot describe this transitional state, it clearly predicts the formation of new follicles after enlargement of the interfollicular space (D); without changing the underlying parameters, the RD mechanism generates a fixed spacing pattern. Indeed, hair follicle development in mouse does occur by consecutive inductive waves.Unexpectedly, DKK2 was capable of stimulating the WNT pathway in the absence of Krm2 expression.13 As discussed by Stark et al., this finding raises the possibility that transgenic overexpression of Dkk2 in our Foxn1::Dkk2 mice may directly activate the canonical WNT pathway.14 Thus, since stabilised β-catenin is sufficient for follicle formation,15 new appendages may be initiated adjacent to previously formed, Dkk2 expressing follicles, if their neighborhood lacks KRM protein.Indeed, during early hair follicle development, interfollicular epidermis shows only weak Krm2 expression as compared to follicle buds (Fig. 2). Moreover, at more advanced stages, the distal part of emerging follicles may even lack any Krm2 gene activity. However, although Krm1 is also predominantly expressed in the developing hair bulb, moderate gene activity is found throughout the epidermis and the distal part of hair follicles (Fig. 3). Hence, developing follicles and their neighborhood do not represent a KRM-negative compartment. As a consequence, hair follicle induction by DKK2-mediated stimulation of the canonical WNT pathway is very unlikely.Open in a separate windowFigure 2Expression of Krm2 during early hair follicle development, demonstrated by non-radioactive in situ hybridisation. Bars, 100 µm.Open in a separate windowFigure 3Expression of Krm1 during early hair follicle development, demonstrated by non-radioactive in situ hybridisation. Bars, 100 µm.In contrast to DKK2, DKK1 is unable to stimulate the canonical WNT pathway.16,17 This difference could be attributed to the amino-terminal domain. To investigate whether transgenic DKK2 may cause hair follicle clustering just by pathway activation, we generated Foxn1::Dkk1 transgenic mice. However, they showed essentially the same phenotype as Foxn1::Dkk2 animals.11 Moreover, transgenic mice expressing amino-terminally truncated DKK1 protein were largely indistinguishable from Foxn1::Dkk1 animals instead of showing an enhanced patterning abnormality (data not shown).If direct stimulation of the canonical WNT signalling pathway by transgenic DKKs would be responsible for the severely altered spatial arrangement of hair follicles, increasing transgene expression should at least preserve or even enhance hair follicle clustering, while the distances between clusters may increase. However, mice with particularly strong Dkk2 transgene expression did not show hair follicle clusters but single, well-developed follicles with large interfollicular distances.11In summary, our data do strongly argue against hair follicle clustering in transgenic mice by DKK-mediated activation of the WNT pathway. By contrast, all data are in line with the recently suggested RD model of hair follicle spacing.Nevertheless, several questions remain to be answered. First, the identity of the WNT protein(s) involved in interfollicular patterning is unknown. Second, the contribution of the inhibitors DKK1 and DKK4 both of which are expressed during hair follicle initiation is still a matter of debate. In the light of multiple WNTs being expressed during early hair follicle morphogenesis,18 some redundancy appears to be likely. Hence, the effects of single gene knockouts may be limited and transgenic approaches with their intrinsic capability of dramatically changing overall WNT levels may be favourable to challenge the RD model and to identify the WNT family members that are involved in the patterning process. Likewise, gene inactivation of either Dkk1 or Dkk4 would be insufficient to provide further support for our model. In principle, the inhibitor(s) may be crucial for follicle formation while they are not involved in the interfollicular patterning process. By contrast, experimentally lowering the inhibitors'' mobility should unequivocally support or disprove the proposed mechanism of hair follicle spacing. According to the underlying mathematical model, it should dramatically affect patterning in the presence of normal levels of functional protein.  相似文献   

17.
Co-localization of mitochondria with chloroplasts in plant cells has long been noticed as beneficial interactions of the organelles to active photosynthesis. Recently, we have found that mitochondria in mesophyll cells of Arabidopsis thaliana expressing mitochondrion-targeted green fluorescent protein (GFP) change their distribution in a light-dependent manner. Mitochondria occupy the periclinal and anticlinal regions of palisade cells under weak and strong blue light, respectively. Redistributed mitochondria seem to be rendered static through co-localization with chloroplasts. Here we further demonstrated that distribution patterns of mitochondria, together with chloroplasts, returned back to those of dark-adapted state during dark incubation after blue-light illumination. Reversible association of the two organelles may underlie flexible adaptation of plants to environmental fluctuations.Key words: Arabidopsis thaliana, blue light, chloroplast, green fluorescent protein, mesophyll cell, mitochondrion, organelle positioningHighly dynamic cell organelles, mitochondria, are responsible not only for energy production, but also for cellular metabolism, cell growth and survival as well as gene regulations.1,2 Appropriate intracellular positioning and distribution of mitochondria contribute to proper organelle functions and are essential for cell signaling.3,4 In plant cells operating photosynthesis, the co-localization of mitochondria with chloroplasts has been a well known phenomenon for a long period of time.5,6,7 Physical contact of mitochondria with chloroplasts may provide a means to transfer genetic information from the organelle genome,8 as well as to exchange metabolite components; a process required for the maintenance of efficient photosynthesis.9,10,11Using Arabidopsis thaliana stably expressing mitochondrion-targeted GFP,12 we have recently examined a different aspect of mitochondria positioning. Although mitochondria in leaf mesophyll cells are highly motile under dark condition, mitochondria change their intracellular positions in response to light illumination.13 The pattern of light-dependent positioning of mitochondria seems to be essentially identical to that of chloroplasts.14 Mitochondria occupy the periclinal regions under weak blue light (wBL; 470 nm, 4 µmol m−2s−1) and the anticlinal regions under strong blue light (sBL; 100 µmol m−2s−1), respectively. A gradual increase in the number of static mitochondria located in the vicinity of chloroplasts in the periclinal regions with time period of wBL illumination clearly demonstrates that the co-localization of these two organelles is a light-induced phenomenon.13In the present study, to ask whether the light-dependent positioning of mitochondria is reversible or not, a time course of mitochondria redistribution was examined transferring the sample leaves from light to dark conditions. The representative results (Fig. 1) clearly show that mitochondria re-changed their positions within several hours of dark treatment. Immediately after dark adaptation, mitochondria in the palisade mesophyll cells were distributed randomly throughout the cytoplasm (Fig. 1A and ref. 13). Chloroplasts were distributed along the inner periclinal walls and the lower half of the anticlinal walls. On the contrary, mitochondria accumulated along the outer (Fig. 1B) and inner periclinal walls when illuminated with wBL. Chloroplast position was also along the outer and inner periclinal walls. Many of the mitochondria located near the chloroplasts lost their motility. When wBL-illuminated leaves were transferred back to dark condition, the numbers of mitochondria and chloroplasts present on the periclinal regions began to decrease within several hours (Fig. 1C). After 10 h dark treatment, distribution patterns of mitochondria as well as chloroplasts almost recovered to those of dark-adapted cells (Fig. 1D).Open in a separate windowFigure 1Distribution of mitochondria and chloroplasts on the outer periclinal regions of palisade mesophyll cells of A. thaliana under different light conditions. Mitochondria (green; GFP) and chloroplasts (red; chlorophyll autofluorescence) were visualized with confocal microscopy after dark adaptation (A), immediately after wBL (470 nm, 4 µmol m−2s−1) illumination for 4 h (B), after dark treatment for 6 h (C) and 10 h (D) following the 4-h wBL illumination, respectively. Bar = 50 µm.To our knowledge, this may be the first report that directly demonstrates that wBL regulates mitochondria and chloroplast positioning in a reversible manner, though the nuclei in A. thaliana leaf cells were also found to reverse their positions when transferred from sBL to dark conditions.15 Reversible regulation of organelle positioning in leaf cells should play critical roles in adaptation of plants to highly fluctuating light conditions in the nature. Since distribution patterns of mitochondria under wBL and sBL are identical to those of chloroplasts, we can assume that phototropins, the BL receptors for chloroplast photo-relocation movement,16 may have some role in the redistribution of mitochondria. On the other hand, we also found that red light exhibited a significant effect on mitochondria positioning (Islam et al. 2009), suggesting an involvement of photosynthesis. These possibilities are now under investigation.  相似文献   

18.
Charles Darwin recognized the power of the root cap as a model for plant signalling and behavior, and used it to explore the ways plants sense and respond to diverse stimuli. Over ensuing decades, various groups have reported tantalizing clues regarding the role of a complex extracellular matrix that ensheaths the tip region housing the apical and root cap meristems. In the course of characterizing root tip resistance to infection and injury and the role border cells play in this phenomenon, we confirmed and extended early- and mid-20th century studies reporting enzyme activities secreted from the root cap. Multidimensional protein analysis revealed, in fact, that >100 proteins are actively synthesized and secreted from the root cap and border cells. This ‘root cap secretome’ appears to be a critical component of root tip resistance to infection. We have developed a microscopic assay to quantify the protein-based extracellular response to dynamic changes in environmental conditions including hydroponic culture, and present the results here. This tool provides a simple, direct measure that can be used to explore the ways border cells may function in the manner of white blood cells to trap, immobilize and neutralize threats to the growing root tip.Key Words: roots, roots cap, rhizosphere ecology, border cells, extracellular proteins, secretomeIn a process similar to the shedding of ‘buccal’ cells into the mammalian oral cavity, root caps of most higher plants naturally can shed thousands of healthy ‘border’ cells into the external environment each day.4,5 Like buccal cells ensheathed in saliva, populations of border cells are contained within a mucous-like material.1,2,6,7 This material-historically termed root cap ‘slime’ or ‘mucilage’-has been found by several groups to be comprised of a high molecular weight polysaccharide, with a small amount of protein (95% and 5%, respectively).1,810 Previously, we used two-dimensional electrophoresis to characterize root cap and border cell proteins in pea and were surprised to find that within a 1 h period of exposure to 35S-labelled methionine, >100 proteins are synthesized and exported into the extracellular environment.11 The protein activities within this ‘root cap secretome’ appear to be critical to the capacity of the root cap extracellular material to protect the root tip from infection.12 When these proteins are degraded the mucilage disintegrates, as described below, suggesting for the first time that the minority protein component of the root cap slime layer is a key structural component.In summary, multidimensional protein analysis confirmed that the root cap secretome includes a mixture of ∼120 proteins including defense and signalling enzymes as well as structural proteins like actin.12 When the proteins are solubilized in situ using a broad spectrum protease, the root tip of pea completely loses its resistance to infection by the pea pathogen, Nectria haematococca. Normally, only 3% of inoculated roots of a susceptible host develop a lesion at the root tip even under conditions highly conducive to infection.13 After protease treatment, however, frequency of infection was increased to 100%.12 Every inoculated root tip became necrotic. This surprising result reveals that, despite being a minor physical component of the extracellular matrix, the secretome is a major functional component.India ink can be used to visualize bacterial and fungal cells, whose extracellular capsules exclude penetration of the carbon particles.14,15 Here we report that the contours of the entire slime-mucilage ‘blob’ (Fig. 1), with border cells embedded within the matrix (Fig. 1, arrows) can be visualized using this simple assay. Surprisingly, the same protease treatment used to solubilize the secretome and eliminate root tip resistance to infection12 also eliminates the matrix seen with India ink. These data indicate that protein is a key structural as well as functional component of the matrix, such that solubilizing the 5% of the matrix that is protein causes the entire structure to disintegrate.Open in a separate windowFigure 1India ink assay to visualize root cap ‘mucilage’. A root tip (white arrow) was placed onto a glass slide and India ink was added. After addition of a cover slip, a clear delineation can be seen (white triangles) where ink fails to penetrate due to the presence of an impermeable layer. Border cells (black arrows) are present throughout the boundary layer. Addition of proteinase K, under conditions that destroy root tip resistance to infection, destroyed the boundary layer, resulting in an unbroken field of black when ink is added (not shown). Magnification: bar = 1 mm.As previously shown in a study of genotype-specific responses of Phaseolus vulgarus border cells to aluminum,16 the India ink assay revealed that individual border cells exhibit species-specific dynamic responses to microbial challenge (Fig. 2). Control pea border cells, washed to remove soluble material, are surrounded by a ca 5 µm wide capsule around the cell periphery (Fig. 2A). When incubated with N. haematococca conidia, a marked increase in the size of the capsule occurred (Fig. 2B). In contrast, when incubated with proteinase K, the capsule virtually disappeared (Fig. 2C). Control corn border cell capsules are slightly larger than those of pea (Fig. 2D). After cocultivation with Pseudomonas aeruginosa, the capsule increased by several-fold and bacterial cells could be seen enmeshed within the layer (Fig. 2E, arrows). Remarkably, a dramatic, >50-fold increase in capsule size occurred on border cells of corn cocultivated in hydroponic culture for 7–10 days with a gram-positive bacterium (Bacillus sp) found as a seed-borne epiphyte (Fig. 2F).Open in a separate windowFigure 2Dynamics of border cell capsule induction, and solubilization by proteinase K. India ink was used to visualize the boundary (triangles) of (A–C) pea and corn (D–F) border cell capsules. (A) Control pea border cell capsule; (B) Increased capsule size in response to N. haematococca conidia; (C) Effect of protease treatment on the the border cell capsule. The cell remains viable, as can been seen by the intact nucleus (arrow), but the capsule is nearly eliminated. (D) Control corn border cell; (E) Increased capsule occurring in response to cocultivation with Pseudomonas aeruginosa. Trapped bacteria can be seen within the capsule (arrows); (F) Massive capsule around a single corn border cell after hydroponic culture for >1 week. Magnification: bar = 15 µm.Brinkmann et al.17 reported that, in mammalian systems, white blood cells (neutrophils) produce extracellular structures containing antimicrobial proteins. According to the authors, these neutrophil extracellular traps (NETs) ‘appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.’ The trapping of pathogenic bacteria within the border cell capsule was reported previously.18 Knudson19 reported that border cells of pea and corn survive for months in hydroponic culture, and the potential impact of such massive capsules on microbial survival over time will be of interest. Our results support the premise, as others have suggested, that the root cap extracellular matrix is a dynamic conduit for plant signalling and behavior responses.20,21 Recognition of the critical role the extracellular proteome plays in its function will provide a context to dissect how root caps perceive and respond to incoming signals to control root growth and development.A note on terminology: Perhaps it might be time to consider that a more dignified term than root cap ‘slime’ would more accurately represent this dynamic component of plant root systems. If the extracellular matrix functions, as in neutrophils, to kill bound bacteria and fungi, then border cell extracellular trap (BET) might work. Border cell ‘capsule,’ in the meantime, accurately conveys the concept of a functional unit surrounding individual cells, and highlights the likely functional parallels with microbial cells.14,15 The capsule of Bacillus anthracis cells, for example, also includes integral proteins—the ‘S-layer’—which underlie surface receptors that control pathogen-host recognition.14 However, root cap capsule seems a bit redundant. We would be interested in the views of our colleagues: Stick with slime? Suggestions for an alternative name?  相似文献   

19.
Jasmonate (JA) inhibits root growth of Arabidopsis thaliana seedlings. The mutation in COI1, that plays a central role in JA signaling, displays insensitivity to JA inhibition of root growth. To dissect JA signaling pathway, we recently isolated one mutant named psc1, which partially suppresses coi1 insensitivity to JA inhibition of root growth. As we identified the PSC1 gene as an allele of DWF4 that encodes a key enzyme in brassinosteroid (BR) biosynthesis, we hypothesized and demonstrated that BR is involved in JA signaling and negatively regulates JA inhibition of root growth. In our Plant Physiology paper, we analyzed effects of psc1 or exogenous BR on the inhibition of root growth by JA. Here we show that treatment with brassinazole (Brz), a BR biosynthesis inhibitor, increased JA sensitivity in both coi1-2 and wild type, which further confirms that BR negatively regulates JA inhibition of root growth. Since effects of psc1, Brz and exogenous BR on JA inhibition of root growth were mild, we suggests that BR negatively finely regulates JA inhibition of root growth in Arabidopsis.Key words: jasmonate signaling, root growth, brassinosteroid, brassinazole, arabidopsisJasmonate (JA) regulates many plant developmental processes and stress responses.1,2 COI1 plays a central role in JA signaling and is required for all JA responses in Arabidopsis.3,4 coi1-1, a strong mutation in COI1, is male sterile and exhibits loss of all JA responses tested to date, such as JA inhibition of root growth, the expression of JA-induced genes, and susceptibility to insect attack and pathogen infection, and coi1-2, a weak mutant of COI1, shows similar JA responses to coi1-1 except for partially fertile that makes it able to produce a small quantity of seeds.5To investigate COI1-mediated JA responses and dissect JA signaling pathway, we conducted genetic screens for suppressors of coi1-2. Previously, we identified cos1 that completely suppresses coil-2 insensitive to JA.6 Recently, we isolated the psc1 mutant that partially suppresses coi1-2 insensitivity to JA, and found that PSC1 is an allele of DWF4.7Since the DWF4 gene encodes a key enzyme in brassinosteroid (BR) biosynthesis,8 we hypothesized that BR is involved in JA signaling. By physiological analysis, we showed that psc1 partially restored JA inhibition of root growth in coi1-2 background and displayed JA hypersensitivity in wild-type COI1 background, the effects of psc1 were eliminated by exogenous BR, and that exogenous BR could attenuated JA inhibition of root growth in wild type. These findings demonstrated that BR is involved in JA signaling and indicated that BR negatively regulates JA inhibition of root growth.BR is a family of polyhydroxylated steroid hormones involved in many aspects of plant growth and development. The BR-deficient mutants exhibited severely retarded growth that was able to be rescued by exogenous BR.9 Brassinazole (Brz) is a BR biosynthesis inhibitor. The Arabidopsis seedlings treated with Brz displayed a BR deficient-mutant-like phenotype, which could be elimilated by exogenous BR.10To determine wether treatment with Brz affects JA inhibition of root growth, the seedlings of wild type and coi1-2 were grown in MS medium supplemented with MeJA and/or Brz. As shown in Figure 1, the relative root length was obviously reduced in both coi1-2 and wild type when treated with Brz relative to without Brz, indicating that the repression of BR biosynthesis by Brz could increase JA sensitivity. These results further confirm BR negatively regulates JA inhibition of root growth.Open in a separate windowFigure 1Effect of Brz on JA inhibition of root growth. Brz increased JA inhibition of root growth in both coi1-2 and wild type (WT). Root length of 7-day-old seedlings grown in MS medium containing 0, 5 and 10 μM MeJA without (−) or with (+) 0.5 μM Brz was expressed as a percentage of root length in MS without (−) or with (+) 0.5 µM Brz. Error bars represent SE (n > 30).It has been demonstrated that JA connects with other plant hormones including auxin, ethylene, abscisic acid, salicylic acid and gibberellin to form complex regulatory networks modulating plant developmental and stress responses.1115 We found that BR negatively regulates JA inhibition of root growth, suggesting that a cross talk between JA and BR exists in planta, which extends our understandings on the JA signal transduction.COI1 is a JA receptor16 and DWF4 catalyzes the rate-limiting step in BR-biosynthesis pathway.8 We found that JA inhibits DWF4 expression, this inhibition was dependent on COI1,7 indicating that DWF4 is downregulated by JA and is located downstream of COI1 in the JA signaling pathway.Since the effects of psc1, Brz, and exogenous BR on JA inhibition of root growth were mild, and the DWF4 expression was partially repressed by JA (Ren et al. 2009, Fig. 1), we suggest that BR negatively finely regulates JA inhibition of root growth, and propose a model for these regulations. As shown in Figure 2A, JA signal passes COI1 repressing substrates, such as JAZs,17,18 i.e., JA activates degradation of substrates via SCFCOI1-26S proteasome,1618 whereas substrates positively regulate root growth through other regulators. JA also partially inhibits DWF4 expression through COI1, reducing BR that is required for root growth.7,9 Mutation in COI1 interrupts JA signaling for failing in degradation of substrates and repression of DWF4 as well, resulting in JA-insensitivity (Fig. 2B). However, mutation in DWF4 or treatment with Brz causes a reduction in BR, which affects root growth, leading to JA-hypersensitivity in wild-type COI1 background (Fig. 2C and E) and partial restoration of JA sensitivity in coi1-2 background (Fig. 2D and F). Whereas, an application of exogenous BR could eliminate the effect of BR reduction resulted from repression of DWF4 by JA on root growth, attenuating JA sensitivity in wild type (Fig. 2G). Because the inhibition of DWF4 expression by JA is dependent on COI1, the coi1 mutant treated with exogenous BR do not show alteration in JA sensitivity (Fig. 2H).Open in a separate windowFigure 2A model for that BR negatively finely regulates JA inhibition of root growth in Arabidopsis. (A–D) Treatment with JA in wild type (A), coi1-2 (B), psc1 (C) and psc1coi1 (D). (E and F) Treatments with JA and Brz in wild type (E) and coi1-2 (F). (G and H) Treatments with JA and exogenous BR in wild type (G) and coi1-2 (H). Arrows indicate positive regulation or enhancement, whereas blunted lines indicate repression or negative regulation. Crosses indicate interruption or impairment. The letter “S” indicates substrates of SCFCOI1. Thicker arrows and blunted lines represent the central JA signaling pathway regulating JA inhibition of root growth. Broken arrows represent JA signaling pathway in which other regulators are involved. The intensity of gray boxes represents the degree of JA inhibition on root growth.  相似文献   

20.
Glutathione (GSH) has widely been known to be a multifunctional molecule especially as an antioxidant up until now, but has found a new role in plant defense signaling. Research from the past three decades indicate that GSH is a player in pathogen defense in plants, but the mechanism underlying this has not been elucidated fully. We have recently shown that GSH acts as a signaling molecule and mitigates biotic stress through non-expressor of PR genes 1 (NPR1)-dependent salicylic acid (SA)-mediated pathway. Transgenic tobacco with enhanced level of GSH (NtGB lines) was found to synthesize more SA, was capable of enhanced expression of genes belonging to NPR1-dependent SA-mediated pathway, were resistant to Pseudomonas syringae, the biotrophic pathogen and many SA-related proteins were upregulated. These results gathered experimental evidence on the mechanism through which GSH combats biotic stress. In continuation with our previous investigation we show here that the expression of glutathione S-transferase (GST), the NPR1-independent SA-mediated gene was unchanged in transgenic tobacco with enhanced level of GSH as compared to wild-type plants. Additionally, the transgenic plants were barely resistant to Botrytis cinerea, the necrotrophic pathogen. SA-treatment led to enhanced level of expression of pathogenesis-related protein gene (PR1) and PR4 as against short-chain dehydrogenase/reductase family protein (SDRLP) and allene oxide synthase (AOS). These data provided significant insight into the involvement of GSH in NPR1-dependent SA-mediated pathway in mitigating biotic stress.Key words: GSH, signaling molecule, biotrophic pathogen, NPR-1, PR-1, PR-4, transgenic tobaccoPlant responses to different environmental stresses are achieved through integrating shared signaling networks and mediated by the synergistic or antagonistic interactions with the phytohormones viz. SA, jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and reactive oxygen species (ROS).1 Previous studies have shown that in response to pathogen attack, plants produce a highly specific blend of SA, JA and ET, resulting in the activation of distinct sets of defense-related genes.2,3 Regulatory functions for ROS in defense, with a focus on the response to pathogen infection occur in conjunction with other plant signaling molecules, particularly with SA and nitric oxide (NO).46 Till date, numerous physiological functions have been attributed to GSH in plants.711 In addition to previous studies, recent study has also shown that GSH acts as a signaling molecule in combating biotic stress through NPR1-dependent SA-mediated pathway.12,13Our recent investigation involved raising of transgenic tobacco overexpressing gamma-glutamylcysteine synthetase (γ-ECS), the rate-limiting enzyme of the GSH biosynthetic pathway.12 The stable integration and enhanced expression of the transgene at the mRNA as well as protein level was confirmed by Southern blot, quantitative RT-PCR and western blot analysis respectively. The transgenic plants of the T2 generation (Fig. 1), the phenotype of which was similar to that of wild-type plants were found to be capable of synthesizing enhanced amount of GSH as confirmed by HPLC analysis.Open in a separate windowFigure 1Transgenic tobacco of T2 generation, (A) three-week-old plant, (B) mature plant.In the present study, the expression profile of GST was analyzed in NtGB lines by quantitative RT-PCR (qRT-PCR) and found that the expression level of this gene is unchanged in NtGB lines as compared to wild-type plants (Fig. 2). GST is known to be a NPR1-independent SA-related gene.14 This suggests that GSH does not follow the NPR1-independent SA-mediated pathway in defense signaling.Open in a separate windowFigure 2Expression pattern of GST in wild-type and NtGB lines.Disease test assay with NtGB lines and wild-type plants was performed using B. cinerea and the NtGB lines showed negligible rate of resistance to this necrotrophic pathogen (Fig. 3). SA signaling has been known to control defense against biotrophic pathogen in contrast, JA/ET signaling controls defense against necrotrophic pathogen.1,15 Thus it has again been proved that GSH is not an active member in the crosstalk of JA-mediated pathway, rather it follows the SA-mediated pathway as has been evidenced earlier.12Open in a separate windowFigure 3Resistance pattern of wild-type and NtGB lines against Botrytis cinerea.Additionally, the leaves of wild-type and NtGB lines were treated with 1 mM SA and the expression of PR1, SDRLP, AOS and PR4 genes were analyzed and compared to untreated plants to simulate pathogen infection. The expression of PR1 increased after exogenous application of SA. In case of PR4, the ET marker, the expression level increased in NtGB lines. On the other hand, the level of SDRLP was nearly the same. However, the expression of AOS was absent in SA-treated leaves (Fig. 4). PR1 has been known to be induced by SA-treatment16 which can be corroborated with our results. In addition, ET is known to enhance SA/NPR1-dependent defense responses,17 which was reflected in our study as well. AOS, the biosynthetic pathway gene of JA, further known to be the antagonist of SA, was downregulated in SA-treated plants.Open in a separate windowFigure 4Gene expression pattern of PR1, SDRLP, PR4 and AOS in untreated and SA-treated wildtype and NtGB lines.Taken together, it can be summarized that this study provided new evidence on the involvement of GSH with SA in NPR1-dependent manner in combating biotic stress. Additionally, it can be claimed that GSH is a signaling molecule which takes an active part in the cross-communication with other established signaling molecules like SA, JA, ET in induced defense responses and has an immense standpoint in plant defense signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号