首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni M 《Cell research》2005,15(8):559-566
PLANT DE-ETIOLATION IS TRIGGERED BY LIGHT SIGNALS Light is arguably the most important resource for plants, and plants have evolved an array of photosensory pig- ments enabling them to develop optimally in a broad range of ambient light conditions. The ph…  相似文献   

2.
Aldosterone increases sodium absorption across renal collecting duct cells primarily by increasing the apical membrane expression of ENaC, the sodium entry channel. Nedd4-2, a ubiquitin-protein isopeptide ligase, tags ENaC with ubiquitin for internalization and degradation, but when it is phosphorylated by the aldosterone-induced kinase, SGK1, Nedd4-2 is inhibited and apical ENaC density and sodium absorption increase. We evaluated the hypothesis that 14-3-3 proteins participate in the aldosterone-mediated regulation of ENaC by associating with phosphorylated Nedd4-2. Mouse cortical collecting duct (mCCD) epithelia cultured on filters expressed several 14-3-3 isoforms; this study focused on an isoform whose expression was induced 3-fold by aldosterone, 14-3-3beta. In polarized mCCD epithelia, aldosterone elicited significant, time-dependent increases in the expression of alpha-ENaC, SGK1, phospho-Nedd4-2, and 14-3-3beta without altering total Nedd4-2. Aldosterone decreased the interaction of alpha-ENaC with Nedd4-2, and with similar kinetics increased the association of 14-3-3beta with phospho-Nedd4-2. Short interfering RNA-induced knockdown of 14-3-3beta blunted the aldosterone-induced increase in alpha-ENaC expression, returned alpha-ENaC-Nedd4-2 binding toward prealdosterone levels, and blocked the aldosterone-stimulated increase in transepithelial sodium transport. Incubation of cell extracts with a selective phospho-Nedd4-2 antibody blocked the aldosterone-induced association of 14-3-3beta with Nedd4-2, implicating SGK1 phosphorylation at Ser-328 as the primary site of 14-3-3beta binding. Our studies show that aldosterone increases the expression of 14-3-3beta, which interacts with phospho-Nedd4-2 to block its interaction with ENaC, thus enhancing sodium absorption by increasing apical membrane ENaC density.  相似文献   

3.
Flowering in the long day plant Hordeum vulgare L. var. Wintex barley was enhanced by the addition of far red light to the main light portion of the photoperiod. Far red energy was provided to produce quantum flux ratios (660/730 nm) and phytochrome photoequilibria (Pfr/total phytochrome) equivalent to those reported both beneath a leaf canopy and outside a canopy at twilight. The photoperiodic requirement for long days can be completely eliminated by the addition of far red light. However, both the effect of extending the photoperiod without far red and the addition of far red to 12-hour photoperiods were suboptimal. Maximal stimulation was achieved only when far red was added to continuous light. The duration of the period of maximal apex elongation rate, as well as the reduction of the time required for floral initiation, were saturated by three inductive cycles. When far red energy was provided intermittently during 3 days of continuous light, the ability to respond varied in a circadian manner. This enhancement of flowering by far red appears to be mediated by the “high irradiance response” of phytochrome.  相似文献   

4.
5.
14-3-3 proteins in plant brassinosteroid signaling   总被引:1,自引:0,他引:1  
  相似文献   

6.
The members of the 14-3-3 isoform family have been shown to be developmentally regulated during animal embryogenesis, where they take part in cell differentiation processes. 14-3-3 isoform-specific expression patterns were studied in plant embryogenic processes, using barley (Hordeum vulgare L.) microspore embryogenesis as a model system. After embryogenesis induction by stress, microspores with enlarged morphology showed higher viability than non-enlarged ones. Following microspore culture, cell division was only observed among the enlarged microspores. Western blot and immunolocalization of three barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C were carried out using isoform-specific antibodies. The level of 14-3-3C protein was higher in enlarged microspores than in non-enlarged ones. A processed form of 14-3-3A was associated with the death pathway of the non-enlarged microspores. In the early embryogenesis stage, 14-3-3 subcellular localization differed among dividing and non-dividing microspores and the microspore-derived multicellular structures showed a polarized expression pattern of 14-3-3C and a higher 14-3-3A signal in epidermis primordia. In the late embryogenesis stage, 14-3-3C was specifically expressed underneath the L(1) layer of the shoot apical meristem and in the scutellum of embryo-like structures (ELSs). 14-3-3C was also expressed in the scutellum and underneath the L(1) layer of the shoot apical meristem of 21 d after pollination (DAP) zygotic embryos. These results reveal that 14-3-3A processing and 14-3-3C isoform tissue-specific expression are closely related to cell fate and initiation of specific cell type differentiation, providing a new insight into the study of 14-3-3 proteins in plant embryogenesis.  相似文献   

7.
This report compares the ability of individual members of the 14-3-3 protein family to inhibit particular protein kinase C (PKC) isoforms. We also show that two of these 14-3-3 isoforms ( and ) specific to mammalian and avian brain arein vivo post-translationally modified forms of and respectively. The presence of this modification enhances the activity of 14-3-3 as an inhibitor of protein kinase C nearly two fold.A method for analysing isoforms of 14-3-3 on acid-urea gels is also described. This permits the complete separation of all major isoforms and their unequivocal identification by a range of isoform specific antisera. The activity of recombinant 14-3-3 and isoforms renatured by a novel method after separation by reverse phase HPLC are compared. The effects of diacylglycerol and the phorbol ester, PMA (phorbol 12-myristate 13 acetate) on the inhibition suggest that one of the sites of interaction of 14-3-3 may be the cysteine-rich (C1) domain in PKC.  相似文献   

8.
14-3-3 proteins are a family of homologous eukaryotic molecules with seven distinct isoforms in mammalian cells. Isoforms of 14-3-3 proteins interact with diverse ligands and are involved in the regulation of mitogenesis, cell cycle progression, and apoptosis. However, whether different 14-3-3 isoforms are responsible for distinct functions remains elusive. Here we report that multiple isoforms of 14-3-3 proteins were capable of binding to several ligands, Bad, Raf-1, and Cbl. In a functional assay of 14-3-3 isoforms, all mammalian 14-3-3 isoforms could inhibit Bad-induced apoptosis. Thus, 14-3-3 function in regulating one of its ligands, Bad, is conserved among mammalian isoforms. We addressed whether 14-3-3 isoforms are differentially expressed in tissues, which may in part determine isoform-specific interactions. In situ hybridization revealed that 14-3-3zeta was present in most tissues tested, but sigma was preferentially expressed in epithelial cells. Thus, isoforms of 14-3-3 can interact and control the function of selected protein ligands, and differential tissue distribution of 14-3-3 isoforms may contribute to their specific interactions and subsequent downstream signaling events.  相似文献   

9.
14-3-3 is now well established as a family of dimeric proteins that can modulate interaction between proteins involved in a wide range of functions. In many cases, these proteins show a distinct preference for a particular isoform(s) of 14-3-3 and in many cases a specific repertoire of dimer formation influences the particular proteins that 14-3-3 interact. Well over 200 proteins have been shown to interact with 14-3-3. The purpose of this review is to give an overview of the recently identified post-translational modifications of 14-3-3 isoforms and how this regulates function, interaction, specificity of dimerisation between isoforms and cellular location of target proteins. The association between 14-3-3 and its targets usually involves phosphorylation of the interacting protein which has been the subject of many reviews and discussion of this is included in other reviews in this series. However, it is now realised that in some cases the phosphorylation and a number of other, novel covalent modifications of 14-3-3 isoforms may modulate interaction and dimerisation of 14-3-3. Since this aspect is now emerging to be of major importance in the mechanism of regulation by 14-3-3 isoforms and has not been the focus of previous reviews, this will be detailed here.  相似文献   

10.
The 14-3-3 protein family associates with many proteins involved in intracellular signalling. In many cases, there is a distinct preference for a particular isoform(s) of 14-3-3. A specific repertoire of 14-3-3 dimer formation may therefore influence which of the interacting proteins could be brought together. We have analysed the pattern of dimer formation for two of the most abundant isoforms of 14-3-3, epsilon ( epsilon ) and gamma (gamma), following their stable expression. This revealed a distinct preference for particular dimer combinations that is largely independent of cellular conditions. gamma 14-3-3 occurred as homodimers and also formed heterodimers, mainly with epsilon 14-3-3 (In PC12 and Cos cells). The epsilon isoform formed heterodimers with 14-3-3 beta, gamma, zeta, and eta, but no homodimers were detected. The two 14-3-3 homologues, BMH1 and BMH2 from Saccharomyces cerevisiae, were mainly heterodimers.  相似文献   

11.
14-3-3:保护性信号转导调节蛋白   总被引:2,自引:0,他引:2  
Chen XQ  Wu WN  Yu CH 《生理科学进展》2004,35(3):247-250
14 3 3蛋白家族是真核细胞中高度保守的可溶性蛋白。在哺乳动物 ,14 3 3蛋白主要存在于脑。 14 3 3蛋白与许多蛋白结合 ,在细胞凋亡、生长、增殖的信号转导过程中发挥关键的调节作用 ,是细胞内重要的保护性蛋白。 14 3 3蛋白还是一些脑疾病的诊断标志。 14 3 3蛋白有可能成为治疗一些疾病的靶点  相似文献   

12.
14-3-3 proteins are abundant eukaryotic proteins that interact with many other proteins, thereby modulating their function and thus cell metabolism. The data from mRNA analysis confirm the developmental regulation of 14-3-3 isoform expression in potato plants. In order to test whether or not 14-3-3 protein expression affects plant phenotype and metabolism, transgenic potato plants either overexpressing Cucurbita pepo 14-3-3 or underexpressing endogenous 14-3-3 isoforms were analysed. An increase in tuber number and a decrease in tuber size in the overexpressed transformant was observed; the transgenic plants contain more chlorophyll than the control and they lose it more slowly than the control when transferred to the dark. The 14-3-3-repressed transgenic plants showed a decrease in tuber number and an increase in tuber size; an increase in the fresh weight of the transgenic tubers was also detected. The increased catecholamine level was accompanied by an increased ratio of soluble sugars to starch in overexpressed transformant. The opposite effect was detected in 14-3-3-repressed transgenic plants. All the repressed plants showed significant increases in nitrate reductase (NR) activity, suggesting that the regulation of NR occurs in vivo, and is not isoform-dependent. The increase in NR activity resulted in a significant decrease in nitrate level. The level of sucrose phosphate synthase activity was also significantly increased in all 14-3-3-underexpressed transgenes, and remarkably the increase in enzyme activity was accompanied by respective changes in sucrose levels in the tubers. The most intriguing finding was the significant (2-3-fold) increase in ethylene content in all the 14-3-3-repressed transgenic lines, which probably resulted from a methionine level increase. The substantial increase of ethylene level in the repressed forms might explain the significant shortening of the vegetation period of the analysed transgenic plants.  相似文献   

13.
14.
15.
16.
In Arabidopsis, expression of FLC and FLC-related genes (collectively called FLC clade) contributes to flowering time in response to environmental changes, such as day length and temperature, by acting as floral repressors. VIN3 is required for vernalization-mediated FLC repression and a VIN3 related protein, VIN3-LIKE 1/VERNALIZATION 5 (VIL1/VRN5), acts to regulate FLC and FLM in response to vernalization.13 VIN3 also exists as a small family of PHD finger proteins in Arabidopsis, including VIL1/VRN5, VIL2/VEL1, VIL3/VEL2 and VIL4/VEL3. We showed that the PHD finger protein, VIL2, is required for proper repression of MAF5, an FLC clade member, to accelerate flowering under non-inductive photoperiods. VIL2 acts together with POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) to repress MAF5 in a photoperiod dependent manner.Key words: photoperiod, chromatin, floweringThe decision to flower is critical to the survival of flowering plants. Thus, plants sense environmental cues to initiate floral transition at a time that both ensures and optimizes their own reproductive fitness. Using a model plant, Arabidopsis thaliana, genetic studies have shown that the regulation of floral transition mainly consists of four genetic pathways: the inductive photoperiod pathway, the autonomous pathway, the vernalization pathway and the gibberellin pathway.4 In Arabidopsis, these four flowering pathways eventually merge into a group of genes called floral integrators, including FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY). Based on the response to specific photoperiod conditions, the flowering behaviors of plants can be classified into three groups: long day (LD), short day (SD) and day neutral response.5,6 Depending on the requirement of day length, plants show either obligate or facultative responses. For example, henbane, carnation and ryegrass are obligate long day (LD) flowering plants which flower under increasing inductive photoperiod but do not flower at all under non-inductive photoperiod.5 On the other hand, plants including Arabidopsis, wheat, lettuce and barley, are considered to be facultative flowering plants. Thus, these plants exhibit early flowering under LD and late-flowering under non-inductive short days (SD). Studies on photoperiodic flowering time mainly focus on the inductive LD-photoperiod pathway in Arabidopsis.  相似文献   

17.
18.
Radioactivity translocation after [14C]-spermidine application over the third trifoliate leaf of soybean plants ( Glycine max . [L.] Merr, cv. Williams) was checked during the first 72 h of short day (SD) treatment to study the involvement of polyamines (PAs) in photoperiodic flowering induction. PAs and/or their metabolites were translocated from the supplied leaf to all parts of the plant. Radioactivity reached its highest concentration in the upper portion of the stem, i.e. the apical bud and the youngest leaf. After the beginning of the first inductive night, the detected radioactivity showed two peaks of maximal concentration. The first arose after the first inductive night, coinciding with the proper flowering induction process; the second one arose after the third inductive night, coinciding with the first morphological symptoms of the transition of vegetative meristems to the reproductive condition. Soluble free PAs showed a different balance in the apical bud of SD-induced plants compared with LD-non induced control plants. Soluble conjugated PAs were detected as traces. It is suggested that under flowering inductive conditions, PAs play a different role according to the stage of the flowering process. Thus, their translocation from the leaves to the axillary and apical buds might be related, in a first step, to the fact that they were part of the complex mechanism of the flowering signal, and in a second step, to the flower transition of vegetative buds.  相似文献   

19.
14-3-3 proteins regulate a diverse set of biological responses but developmental phenotypes associated with 14-3-3 mutations have not been described in plants. Here, physiological and biochemical tests demonstrate interactions between 14-3-3s and the well-established mechanisms that govern light sensing and photoperiodic flowering control. Plants featuring homozygous disruption of 14-3-3 isoforms upsilon and mu display defects in light sensing and/or response. Mutant plants flower late and exhibit long hypocotyls under red light, with little effect under blue or far-red light. The long hypocotyl phenotype is consistent with a role for 14-3-3 upsilon and mu in phytochrome B signaling. Yeast two-hybrid and coimmunoprecipitation assays indicate that 14-3-3 upsilon and mu proteins physically interact with CONSTANS, a central regulator of the photoperiod pathway. Together, these data indicate a potential role for specific 14-3-3 isoforms in affecting photoperiodic flowering via interaction with CONSTANS, possibly as integrators of light signals sensed through the phytochrome system.  相似文献   

20.
The phylogenetic position of eleven 14-3-3 proteins from five protozoal species was tested relative to other eukaryotic 14-3-3 versions representing many of the previously described isoforms. The protozoal proteins, four from Entodinium caudatum, three from Entameoba histolytica and four from apicomplexan parasites formed clusters closer to the plant and animal epsilon isoforms than to the animal beta, gamma/eta, sigma/theta, and zeta isoforms. This extends the preliminary findings of Wang and Shakes (1996) but data from a wider range of genera are still required to strengthen our hypothesis that the protozoan isoforms may constitute novel isoforms of the 14-3-3 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号