共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
How growth regulators provoke context-specific signals is a fundamental question in developmental biology. In plants, both auxin and brassinosteroids (BRs) promote cell expansion, and it was thought that they activated this process through independent mechanisms. In this work, we describe a shared auxin:BR pathway required for seedling growth. Genetic, physiological, and genomic analyses demonstrate that response from one pathway requires the function of the other, and that this interdependence does not act at the level of hormone biosynthetic control. Increased auxin levels saturate the BR-stimulated growth response and greatly reduce BR effects on gene expression. Integration of these two pathways is downstream from BES1 and Aux/IAA proteins, the last known regulatory factors acting downstream of each hormone, and is likely to occur directly on the promoters of auxin:BR target genes. We have developed a new approach to identify potential regulatory elements acting in each hormone pathway, as well as in the shared auxin:BR pathway. We show that one element highly overrepresented in the promoters of auxin- and BR-induced genes is responsive to both hormones and requires BR biosynthesis for normal expression. This work fundamentally alters our view of BR and auxin signaling and describes a powerful new approach to identify regulatory elements required for response to specific stimuli. 相似文献
4.
Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling 总被引:1,自引:0,他引:1
The cell cortex serves as a critical nexus between the extracellular environment/cell membrane and the underlying cytoskeleton and cytoplasm. In many cells, the cell cortex is organized and maintained by the Ezrin, Radixin and Moesin (ERM) proteins, which have the ability to interact with both the plasma membrane and filamentous actin. Although this membrane-cytoskeletal linkage function is critical to stability of the cell cortex, recent studies indicate that this is only a part of what ERMs do in many cells. In addition to their role in binding filamentous actin, ERMs regulate signaling pathways through their ability to bind transmembrane receptors and link them to downstream signaling components. In this review we discuss recent evidence in a variety of cells indicating that ERMs serve as scaffolds to facilitate efficient signal transduction on the cytoplasmic face of the plasma membrane. 相似文献
5.
6.
Bacillus subtilis aprE gene codes for the extracellular protease subtilisin. Its expression is controlled by AbrB, DegU, Hpr, SinI, SinR and Spo0A transition state protein regulators. To determine in vivo the protein-protein interactions among these regulators, we used the LexA-based bacterial genetic two-hybrid system. Our results show homo-dimerization to all the analyzed proteins and hetero-dimerization between SinR-SinI and SinR-Hpr. 相似文献
7.
8.
9.
The MerR family of transcriptional regulators 总被引:1,自引:0,他引:1
10.
The Lrp family of transcriptional regulators 总被引:1,自引:0,他引:1
11.
Hongning Tong;Chengcai Chu 《遗传学报》2023,(7):459-461
<正>The Green Revolution,which took place in the 1960s,was instrumental in increasing grain yields and mitigating the world's food crisis.Breeding semi-dwarfing crops was a critical activity that significantly improved lodging resistance,field management,and harvesting convenience.Subsequent molecular genetic studies revealed that the semi-dwarfing genes used in rice and wheat,two major staple crops,are related to the plant hormone gibberellin (GA).In rice,SD1 encodes a defective GA synthetic enzyme GA20ox-2,while in wheat,Rht-1 (Rht-B1b or Rht-D1b) encodes the gain-of-function form of the GA signaling inhibitors known as DELLA proteins (Peng et al.,1999;Sasaki et al.,2002).However, 相似文献
12.
13.
14-3-3 proteins in plant brassinosteroid signaling 总被引:1,自引:0,他引:1
de Vries SC 《Developmental cell》2007,13(2):162-164
14.
15.
16.
17.
18.
Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering 总被引:2,自引:0,他引:2
Domagalska MA Schomburg FM Amasino RM Vierstra RD Nagy F Davis SJ 《Development (Cambridge, England)》2007,134(15):2841-2850
A main developmental switch in the life cycle of a flowering plant is the transition from vegetative to reproductive growth. In Arabidopsis thaliana, distinct genetic pathways regulate the timing of this transition. We report here that brassinosteroid (BR) signaling establishes an unexpected and previously unidentified genetic pathway in the floral-regulating network. We isolated two alleles of brassinosteroid-insensitive 1 (bri1) as enhancers of the late-flowering autonomous-pathway mutant luminidependens (ld). bri1 was found to predominantly function as a flowering-time enhancer. Further analyses of double mutants between bri1 and known flowering-time mutants revealed that bri1 also enhances the phenotype of the autonomous mutant fca and of the dominant FRI line. Moreover, all of these double mutants exhibited elevated expression of the potent floral repressor FLOWERING LOCUS C (FLC). This molecular response could be efficiently suppressed by vernalization, leading to accelerated flowering. Additionally, specific reduction of the expression of FLC via RNA interference accelerated flowering in bri1 ld double mutants. Importantly, combining the BR-deficient mutant cpd with ld also resulted in delayed flowering and led to elevated FLC expression. Finally, we found increased histone H3 acetylation at FLC chromatin in bri1 ld mutants, as compared with ld single mutants. In conclusion, we propose that BR signaling acts to repress FLC expression, particularly in genetic situations, with, for example, dominant FRI alleles or autonomous-pathway mutants, in which FLC is activated. 相似文献
19.
The interaction between the plant hormones, brassinosteroids and auxins has been documented in various processes using a variety of plants and plant parts. In this study, detached inflorescences from brassinosteroid biosynthesis and signaling Arabidopsis mutants were evaluated for their gravitropic bending in response to epibrassinolide (EBR) and indole-3-acetic acid (IAA). EBR supplied to the base of detached inflorescences stimulated gravitropic bending in all BR biosynthetic mutants but there was no effect on the BR signaling mutant or wild type plants. When IAA was supplied to the base of BR mutant inflorescences both natural and EBR-induced gravitropic bending was inhibited. Treatment with the auxin inhibitors also decreased both natural and EBR-induced gravitropic bending. No gravitropic bending was observed when the apical tips of BR mutant inflorescences were removed. IAA treatment to the tips of decapitated BR mutant inflorescences restored gravitropic bending to values observed in the inflorescences with an apical tip, however, EBR applied to the tip had no effect. When decapitated inflorescences from BR mutants were treated with IAA to the base and either gel, EBR or IAA was applied to the tip; there was no gravitropic bending. These results show that brassinosteroids have a role in the gravitropic bending response in Arabidopsis and mutants serve to uncover this hidden contributor. 相似文献
20.