首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain greater insight into the mechanism of dormancy release in the potato tuber, an investigation into physiological and biochemical changes in tuber and bud tissues during the transition from bud dormancy (immediately after harvest) to active bud growth was undertaken. Within the tuber, a rapid shift from storage metabolism (starch synthesis) to reserve mobilization within days of detachment from the mother plant suggested transition from sink to source. Over the same period, a shift in the pattern of [U-(14)C]sucrose uptake by tuber discs from diffuse to punctate accumulation was consistent with a transition from phloem unloading to phloem loading within the tuber parenchyma. There were no gross differences in metabolic capacity between resting and actively growing tuber buds as determined by [U-(14)C]glucose labelling. However, marked differences in metabolite pools were observed with large increases in starch and sucrose, and the accumulation of several organic acids in growing buds. Carboxyfluorescein labelling of tubers clearly demonstrated strong symplastic connection in actively growing buds and symplastic isolation in resting buds. It is proposed that potato tubers rapidly undergo metabolic transitions consistent with bud outgrowth; however, growth is initially prevented by substrate limitation mediated via symplastic isolation.  相似文献   

2.
Regulation of potato tuber sprouting   总被引:1,自引:0,他引:1  
  相似文献   

3.
K. J. Oparka 《Protoplasma》1986,131(3):201-210
Summary Potential pathways for sucrose unloading in the potato tuber were examined by light and electron microscopy. Abundant plasmodesmata connected sieve elements with surrounding parenchyma elements and also sieve elements with companion cells. Plasmodesmata were rarer, however, between companion cells and parenchyma elements. These observations suggest that sucrose may leave the sieve elements and enter the storage parenchyma cells directly via the symplast and that transport through the companion cell may not be a prerequisite for unloading. Plasmodesmata, grouped together in primary pit fields, were also abundant between storage cells, and isolated storage cells, separated enzymically, showed considerable variation in plasmodesmatal distribution between cells and also on different faces of a single cell. Deposition of starch was found to occur in the tuber cortex while an endodermis with Casparian strip was present external to the phloem, suggesting that assimilates initially enter the cortical storage cells by an entirely symplastic pathway. The possible involvement of ATPase in the unloading process was examined cytochemically, using a lead-salt precipitation method. By contrast with previous findings for phloem no evidence was found for ATPase activity that was unique to the sieve element-companion cell complex. The present observations favour the view that phloem unloading in the potato tuber is a symplastic and passive process.  相似文献   

4.
An analysis of the potato (Solanum tuberosum L.) tuber life cycle has been completed using a range of mass-spectrometry (MS) based approaches. Six stages have been examined which included developing and mature tubers, sprouting mature tubers and mature tubers stored at 5 or 10°C. The impact of excising developing tubers from the mother plant (source-sink manipulation) was also determined. Data was subjected to Principal Components Analysis, Analysis of Variance and Hierarchical Cluster Analysis to assess the potential for separating the life cycle stages, to define the major profiles for metabolite changes during the life cycle stages examined, and to inform on which metabolites underpinned these profiles. We have shown that it is possible to separate all of the stages using combined analytical approaches and that five major profiles can be used to describe the changes in metabolite levels. Data also indicate that, within a relatively short timeframe, manipulation of source-sink relations has a significant impact on metabolite pools beyond what is currently known for sugar–starch metabolism. We have also demonstrated that the metabolomics data can be mined to provide answers to specific questions––in this case to identify temporal changes in metabolites related to acrylamide-forming potential.  相似文献   

5.
The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield.  相似文献   

6.
Phloem unloading was studied in potato plants in real time during the early stages of tuberization using carboxyfluorescein (CF) as a phloem-mobile tracer, and the unloading pattern was compared with autoradiography of tubers that had transported (14)C assimilates. In stolons undergoing extension growth, apoplastic phloem unloading predominated. However, during the first visible signs of tuberization, a transition occurred from apoplastic to symplastic transport, and both CF and (14)C assimilates subsequently followed identical patterns of phloem unloading. It is suggested that the switch to symplastic sucrose unloading may be responsible for the upregulation of several genes involved in sucrose metabolism. A detailed analysis of sugar levels and (14)C sugar partitioning in tuberizing stolons revealed a distinct difference between the apical region of the tuber and the subapical region. Analysis of invertase activity in nontuberizing and tuberizing stolons revealed a marked decline in soluble invertase in the subapical region of swelling stolons, consistent with the switch from apoplastic to symplastic unloading. However, cell wall-bound invertase activity remained high in the apical 1 to 2 mm of tuberizing stolons. Histochemical analysis of potato lines transformed with the promoter of an apoplastic invertase gene (invGE) linked to a reporter gene also revealed discrete gene expression in the apical bud region. Evidence is presented that the apical and lateral tuber buds function as isolated domains with respect to sucrose unloading and metabolism.  相似文献   

7.
A review of the physiology of potato tuber dormancy   总被引:3,自引:0,他引:3  
A review of the scientific literature relating to the physiology of potato (Solanum tuberosum) tuber dormancy is presented. Effort has been concentrated on an up-to-date overview of the current state of understanding, rather than comprehensively covering the very extensive literature going back over many decades. The format chosen follows the fate of the crop. After defining tuberisation and dormancy, the physiological activity of the dormant tuber is reviewed and the storage environment is considered from both a physical and chemical standpoint. Advances in chemical control and the potential for molecular biology are highlighted.  相似文献   

8.
The aim of this work was to evaluate the extent to which plastidial phosphoglucomutase (PGM) activity controls starch synthesis within potato (Solanum tuberosum L. cv. Desirée) tubers. The reduction in the activity of plastidial PGM led to both a correlative reduction in starch accumulation and an increased sucrose accumulation. The control coefficient of plastidial PGM on the accumulation of starch was estimated to approximate 0.24. The fluxes of carbohydrate metabolism were measured by investigating the metabolism of [U-14C]glucose in tuber discs from wild-type and transgenic plants. In tuber discs the control coefficient of plastidial PGM over starch synthesis was estimated as 0.36, indicating that this enzyme exerts considerable control over starch synthesis within the potato tuber.  相似文献   

9.
Proteomic analysis of the potato tuber life cycle   总被引:1,自引:0,他引:1  
The tuber of potato (Solanum tuberosum) is commonly used as a model for underground storage organs. In this study, changes in the proteome were followed from tuberization, through tuber development and storage into the sprouting phase. Data interrogation using principal component analysis was able to clearly discriminate between the various stages of the tuber life cycle. Moreover, five well-defined protein expression patterns were found by hierarchical clustering. Altogether 150 proteins showing highly significant differences in abundance between specific stages in the life cycle were highlighted; 59 of these were identified. In addition, 50 proteins with smaller changes in abundance were identified, including several novel proteins. Most noticeably, the development process was characterized by the accumulation of the major storage protein patatin isoforms and enzymes involved in disease and defense reactions. Furthermore, enzymes involved in carbohydrate and energy metabolism and protein processing were associated with development but decreased during tuber maturation. These results represent the first comprehensive picture of many proteins involved in the tuber development and physiology.  相似文献   

10.
MOORBY  J. 《Annals of botany》1968,32(1):57-68
The uptake and distribution of nitrogen, phosphorus, and potassiumhas been studied throughout the life of potato plants. Thereappears to be a net loss of all three elements from the plantduring emergence growth even though uptake occurs. When daughtertubers are formed they very quickly become the dominant sinkfor mineral nutrients, the concentrations of N, P, and K remainingsteady for a long period. These concentrations are maintainedin spite of decreasing rates of uptake, indicating the transferenceof mobile ions from the haulm to the growing tubers. 14C tracer experiments have shown that after tuberization thereis a greater export of recently incorporated photosynthate fromthe leaves than takes place before tuberization. There is nogood correlation between the size of individual tubers and theamount of photosynthate transported into them. This is thoughtto be because the largest tubers are not necessarily growingfaster than the smaller tubers. The most active sinks are alsomost active in converting the mobile 14C into storage compounds.The mother tuber continues to import 14C until it is detachedfrom the plant, but over much of this period there is no changein the tuber dry-weight, indicating that there is an equivalentexport from the tuber. The similarities between these distribution patterns and thosefound in tubers showing second-growth are described and theimplications with respect to the control of tuber growth discussed.  相似文献   

11.
Identification of molecular markers defining the end of tuber dormancy prior to visible sprouting is of agronomic interest for potato growers and the potato processing industry. In potato tubers, breakage of dormancy is associated with the reactivation of meristem function. In dormant meristems, cells are arrested in the G1/G0 phase of the cell cycle and re-entry into the G1 phase followed by DNA replication during the S phase enables bud outgrowth. Deoxyuridine triphosphatase (dUTPase) is essential for DNA replication and was therefore tested as a potential marker for meristem reactivation in tuber buds. The corresponding cDNA clone was isolated from potato by PCR. The deduced amino acid sequence showed 94% similarity to the tomato homologue. By employing different potato cultivars, a positive correlation between dUTPase expression and onset of tuber sprouting could be confirmed. Moreover, gene expression analysis of tuber buds during storage time revealed an up-regulation of the dUTPase 1 week before visible sprouting occurred. Further analysis using an in vitro sprout assay supported the assumption that dUTPase is a good molecular marker to define the transition from dormant to active potato tuber meristems.  相似文献   

12.
To help develop an understanding of the genes that govern the developmental characteristics of the potato (Solanum tuberosum), as well as the genes associated with responses to specified pathogens and storage conditions, The Canadian Potato Genome Project (CPGP) carried out 5′ end sequencing of regular, normalized and full-length cDNA libraries of the Shepody potato cultivar, generating over 66,600 expressed sequence tags (ESTs). Libraries sequenced represented tuber developmental stages, pathogen-challenged tubers, as well as leaf, floral developmental stages, suspension cultured cells and roots. All libraries analysed to date have contributed unique sequences, with the normalized libraries high on the list. In addition, a low molecular weight library has enhanced the 3′ ends of our sequence assemblies. Using the combined assembly dataset, unique tuber developmental, cold storage and pathogen-challenged sequences have been identified. A comparison of the ESTs specific to the pathogen-challenged tuber and foliar libraries revealed minimal overlap between these libraries. Mixed assemblies using over 189,000 potato EST sequences from CPGP and The Institute for Genomics Research (TIGR) has revealed common sequences, as well as CPGP- and TIGR-unique sequences. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
Near-full-length cDNA clones to the small and large subunit of the heterotetrameric potato tuber ADP-glucose pyrophosphorylase have been isolated and characterized. The missing amino terminal sequence of the small subunit has also been elucidated from its corresponding genomic clone. Primary sequence comparisons revealed that each potato subunit had less identity to each other than to their homologous subunit from other plants. It also appeared that the smaller subunit is more conserved among the different plants and the larger subunit more divergent. Amino acid comparisons of both potato tuber sequences to theEscherichia coli ADP-glucose pyrophosphorylase sequence revealed conserved regions important for both catalytic and allosteric function of the bacterial enzyme.  相似文献   

14.
Under optimum growing conditions neither tuber- nor soil-borne Phoma exigua var. foveata inoculum appreciably affected stand or yield of the subsequent potato crop. Seed tubers with gangrene rots caused high levels of stem and tuber symptoms when planted in var. foveata contaminated or uncontaminated land; contaminated seed tubers with no rots also produced progeny with a high gangrene potential. Sufficient soil-borne inoculum was carried over in land that produced a gangrene affected crop in the previous year to override the effect of tuber disinfection. Effective gangrene control was achieved by a combination of tuber disinfection shortly after harvest over successive years with a 1 in 5 yr potato crop rotation. Gangrene rots usually developed through injuries to the tuber periderm, rots in other tubers being associated with pustules of powdery scab (Spon-gospora subterranea).  相似文献   

15.
Tuber dormancy and sprouting are commercially important potato traits as long-term tuber storage is necessary to ensure year-round availability. Premature dormancy release and sprout growth in tubers during storage can result in a significant deterioration in product quality. In addition, the main chemical sprout suppressant chlorpropham has been withdrawn in Europe, necessitating alternative approaches for controlling sprouting. Breeding potato cultivars with longer dormancy and slower sprout growth is a desirable goal, although this must be tempered by the needs of the seed potato industry, where dormancy break and sprout vigour are required for rapid emergence. We have performed a detailed genetic analysis of tuber sprout growth using a diploid potato population derived from two highly heterozygous parents. A dual approach employing conventional QTL analysis allied to a combined bulk-segregant analysis (BSA) using a novel potato whole-exome capture (WEC) platform was evaluated. Tubers were assessed for sprout growth in storage at six time-points over two consecutive growing seasons. Genetic analysis revealed the presence of main QTL on five chromosomes, several of which were consistent across two growing seasons. In addition, phenotypic bulks displaying extreme sprout growth phenotypes were subjected to WEC sequencing for performing BSA. The combined BSA and WEC approach corroborated QTL locations and served to narrow the associated genomic regions, while also identifying new QTL for further investigation. Overall, our findings reveal a very complex genetic architecture for tuber sprouting and sprout growth, which has implications both for potato and other root, bulb and tuber crops where long-term storage is essential.Subject terms: Genetic markers, Next-generation sequencing, Plant breeding, Agricultural genetics, Genetic mapping  相似文献   

16.
The potato tuber constitutes a model system for the study of dormancy release and sprouting, suggested to be regulated by endogenous plant hormones and their balance inside the tuber. During dormancy, potato tubers cannot be induced to sprout without some form of stress or exogenous hormone treatment. When dormancy is released, sprouting of the apical bud may be inhibited by sprout control agents or cold temperature. Dominance of the growing apical bud over other lateral buds decreases during storage and is one of the earliest morphophysiological indicators of the tuber's physiological age. Three main types of loss of apical dominance (AD) affect sprouting shape. Hallmarks of programmed cell death (PCD) have been identified in the tuber apical bud meristem (TAB-meristem) during normal growth, and are more extensive when AD is lost following extended cold storage or chemical stress. Nevertheless, the role of hormonal regulation in TAB-meristem PCD remains unclear.  相似文献   

17.
18.
马铃薯全生育期内根际微生物组变化规律   总被引:1,自引:0,他引:1  
[目的]陆生植物根际环境与土壤中的微生物菌群关系密切,其根际微生物群落动态极可能直接影响着植物健康及养分高效利用。虽然根际益生菌已被证实可用于提高作物生产力,但由于缺乏对这些菌群组成动态变化规律的认识了解,它们的开发受到限制。研究马铃薯全生育期根际菌群的动态变化规律,探讨根际菌群变化与马铃薯发育时期的相关性,为针对马铃薯不同生长时期开发专用生物益生菌肥奠定理论基础。[方法]本研究着眼于马铃薯田间全生命周期微生物组动态变化,通过Illumina MiSeq高通量测序技术对不同时间点马铃薯根际细菌16S rRNA基因V3-V4区和真菌ITS区测序并对操作分类单位(OTU)进行聚类,分析样品间微生物群落的多样性特征,并通过机器学习的方法建立模型,将根际菌群与田间马铃薯发育时间相关联。[结果]根际菌群在马铃薯各个发育阶段随时间变化明显,营养生长阶段的微生物群落结构发生了显著变化,随着结薯期的开始逐渐稳定,直到块茎成熟后期根际菌群再次出现较大变化,且在不同施肥处理间呈现较大差异。进一步基于模型挖掘了与马铃薯发育时间相关联的22个特征细菌类群和16个特征真菌类群,其中苗期和结薯末期的特征类群分别为梭菌(Clostridium)和放线菌(Actinobacteria)。[结论]马铃薯的生长发育时期是影响根际微生物群落组成的主要因素,益生菌肥的添加主要影响马铃薯结薯末期的细菌微生物菌群结构。  相似文献   

19.
Regulation of potato tuber dormancy and sprouting   总被引:2,自引:0,他引:2  
Dormancy is the final stage of tuber life serving to preserve tubers as organs of vegetative reproduction under unfavorable growth conditions. Since the duration of potato tuber dormancy and their sprouting time have significant economic importance, much attention is given to the study of the regulation of these processes. This review considers metabolite, genetic, and hormonal aspects of regulation of potato (Solanum tuberosum L.) tuber dormancy and sprouting. Particular attention is paid to the relationship between processes occurring in different parts of the tuber: its storage tissues and buds. The interaction of hormonal and metabolite (carbohydrate) regulation of dormancy and sprouting is discussed.  相似文献   

20.
Abstract:  The potato tuber moth is a noxious pest of potato in stores, where the use of repellent plants is an environmentally sound alternative to the application of chemical pesticides. We evaluated the protective effect of native Minthostachys species (Lamiaceae) against tuber infestation by the potato tuber moth in a rustic store in Cusco, Perú. We covered potato tubers with dried shoots of Minthostachys spicata and Minthostachys glabrescens and compared tuber damage with a control treatment of maize straw. We also conducted a no-choice oviposition bioassay in the laboratory, testing the oviposition deterrence of essential oils of M. spicata , M. glabrescens and Minthostachys mollis at natural concentrations. We recorded the number of eggs laid by mated moths on filter paper treated with essential oils of each of the three species and on two control treatments: hexane and untreated blank. Finally, we tested for differences in oviposition deterrence among five full-sib families of potato tuber moth raised under identical conditions. We found that dried, chopped leaves and flowers of Minthostachys species reduced the percentage of tuber damage in stores in comparison with the control (5% vs. 12%), but no difference in protection was found between species. Essential oils at natural concentrations deterred moth oviposition, reducing the number of eggs laid by about 80% compared with the control treatments; again, there were no significant differences between Minthostachys species. Finally, whereas we detected among-family variation in oviposition on filter papers treated with essential oils, no difference was found in the number of eggs laid on control substrates. Therefore, there was genetic variation for oviposition deterrence in the potato tuber moth and resistance to repellent plants might evolve thereafter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号