首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is believed that the nicotine concentration in tobacco is closely correlated with the amount of nitrogen (N) supplied.On the other hand,N uptake mainly occurs at the early growth stage,whereas nicotine concentration increases at the late growth stage,especially after removing the shoot apex.To identify the causes of the increased nicotine concentration in tobacco plants,and to compare the effects of different ways of mechanical wounding on nicotine concentration,field experiments were carried out in Fuzhou,Fujian Province in 2003 and 2004.Excision of the shoot apex had almost no influence on N content in the plant;however,it caused dramatic increases in nicotine concentration in leaves,especially in the middle and upper leaves.An additional increase of the nicotine concentration was obtained by removal of axillary buds.The wounding caused by routine leaf harvests,however,did not change the leaf nicotine concentration,and neither did reducing leaf harvest times.The present results revealed no direct relationship between N supply and nicotine concentration in tobacco leaves,and indicate that not all kinds of mechanical wounding were capable of stimulating nicotine synthesis in tobacco plants.Since nicotine production is highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant,and application of 1-naphthylacetic acid onto the cut surface of the stem after removing the shoot apex markedly decreased the nicotine concentration in different leaves and the total nicotine content in the plant,the results suggest that decreased auxin supply caused by removal of the shoot apex as a kind of mechanical wounding might regulate nicotine synthesis in the roots of tobacco plants.  相似文献   

2.
The effects of different kinds of mechanical wounding on nicotine production in tobacco plants were compared, with sand or hydroponics culture under controlled conditions. Both removal of the shoot apex and damage of the youngest unfolded leaves nos 1 and 2 by a comb-like brusher with 720 punctures caused an increase in nicotine concentration in whole plants at day 3, and reached its highest level at day 6. The nicotine concentration induced by excision of the shoot apex was much higher than that induced by leaf wounding. Both treatments also caused an increase in jasmonic acid (JA) concentration within 90 min in the shoot, followed by an increase in the roots (210 min), in which the JA concentration induced by leaf wounding was significantly higher than that induced by excision of the shoot apex. The increase in nicotine concentration occurred throughout the whole plant, especially in the shoot, while the increase in JA concentration in the shoot was restricted to the damaged tissues, and was not observed in the adjacent tissues. Removal of the lateral buds that emerged after excision of the shoot apex caused a further increase in nicotine concentrations in the plant tissues. Removal of mature leaves, however, did not cause any changes in nicotine concentration in the plant, even though the degree of wounding in this case was comparable with that occurring with apex removal. The results suggest that the nicotine production in tobacco plants was not correlated with the degree of wounding (cut-surface or punctures), but was highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant. Furthermore, immediate application of 1-naphthylacetic acid (NAA) on the cut surface after removing the shoot apex completely inhibited the increase both in nicotine in whole plants and in JA in the damaged stem segment and roots. Application of an auxin transport inhibitor around the stem directly under the shoot apex of intact plants also caused an increase in nicotine concentration in the whole plant. The results strongly suggest that auxin serves as a negative signal to regulate nicotine synthesis in roots of tobacco plants.  相似文献   

3.
Xi XY  Li CJ  Zhang FS 《Annals of botany》2005,96(5):793-797
BACKGROUND: and Aims High nicotine concentrations in leaves, especially in the upper leaves, offer a serious problem for the cultivation of tobacco (Nicotiana tabacum). Preliminary field experiments showed that rapid mineralization of soil N during late stages of growth may contribute to high nicotine concentrations in leaves. METHODS: A sand-culture experiment was carried out in the greenhouse. The N supply was controlled during the experiment, and different amounts of 15N were supplied during late stages of growth (after removal of the shoot apex), to investigate the contribution of the N taken up at this time to the N content of and nicotine concentration in tobacco plants. KEY RESULTS: Addition of 1.6 g or 4 g 15N-labelled NH4NO3 after removing the shoot apex and flushing out the 14N did not increase leaf dry weights; however, it did result in delayed leaf senescence, more lateral bud formation, and an increase in 15N as a proportion of total N, and nicotine-15N as a proportion of total nicotine-N in each organ. The nicotine concentration, 15N and nicotine-15N abundances were increased from the bottom to the top leaves. When more 15N-labelled NH4NO3 was supplied, the nicotine concentration in leaves increased, and so did the 15N abundance in nicotine-N. CONCLUSION: Enhanced N supply in the later growth stages (after removing the apex) increased N content and nicotine concentration in tobacco plants. Nicotine was synthesized de novo during the late growth stages.  相似文献   

4.
In this study the influence of nitrogen nutrition on the patterns of carbon distribution was investigated with Urtica dioica. The nettles were grown in sand culture at 3 levels of NO?3, namely 3 (low), 15 (medium) and 22 (high) mM. These levels encompassed a range within which nitrogen did not affect total biomass production. The ratio of root: shoot biomass of the low nitrogen plants was, however, significantly higher than that of the nettles grown at medium and high N supply. Carbon allocation from one leaf of each pair of leaves was examined after a 14CO2-pulse and a subsequent 14C distribution period of one night. Only the youngest two leaf pairs did not export assimilates. Carbon (14C) export to the shoot apex and to the roots, as measured at the individual nodes responded to the nitrogen status: At medium and high nitrogen supply the 3rd, 4th and 5th leaf pairs exported to the shoot apex, while lower leaves exported to the root. At low nitrogen supply only the 3rd leaf exported towards the shoot apex. The results illustrate the plastic response of carbon distribution patterns to the nitrogen supply, even when net photosynthesis, carbon export from the source leaves and biomass production were not affected by the nitrogen supply to the plant.  相似文献   

5.
Subterranean clover (Trifolium subterraneum L. cv Woogenellup) and soft chess grass (Bromus mollis L. cv Blando) were grown in monocultures with 15NH4Cl added to the soil to study nitrogen movement during regrowth following shoot removal. Four clipping treatments were imposed. Essentially all available 15N was assimilated from the soil prior to the first shoot harvest. Measurements of total reduced nitrogen and 15N contained within that nitrogen fraction in roots, crowns, and shoots at each harvest showed large, significant (P ≤ 0.001) declines in excess 15N of crowns and roots in both species between the first and fourth harvests. There was no significant decline in total reduced nitrogen in the same organs over that period. Similar responses were evident in plants defoliated three times. The simplest interpretation of these data is that reduced nitrogen compounds turn over in plant roots and crowns during shoot regrowth. Calculations for grass and clover plants clipped four times during the growing season indicated that 100 to 143% of the nitrogen present in crowns and roots turned over between the first and fourth shoot harvest in both species, assuming nitrogen in those organs was replaced with nitrogen containing the lowest available concentration of 15N. If other potential sources of nitrogen were used for the calculations, it was necessary to postulate that larger amounts of total nitrogen flowed through the crown and root to produce the measured dilution of 15N compounds. These data provide the first quantitative estimates of the amount of internal nitrogen used by plants, in addition to soil nitrogen or N2, to regenerate shoots after defoliation.  相似文献   

6.
A glasshouse study was made of the distribution of 15N among vegetative organs of sunflower and its later remobilization and redistribution to seeds, as influenced by the developmental stage at which 15N was provided, and by the N status of the plants. Plants of Hysun 30 sunflower were grown in sand culture and provided with K15NO3 for a 3-day period at: (a) 3 days before the end of floret initiation; (b) 3 days before anthesis; (c) the start of anthesis; (d) full anthesis; and (e) 8 days after full anthesis. The plants were grown on a range of N supply rates, from severely deficient to more than adequate for maximum growth. Nitrogen-15 was distributed to all parts of the plant at the end of the 15N uptake periods. With the exception of the most N-stressed plants, subsequent remobilization of 15N from roots, stems and leaves occurred irrespective of the time the 15N was taken up. However, the percentage redistribution to seeds of 15N taken up at the end of floret initiation was less than for 15N taken up at anthesis. Remobilization of 15N from leaves and roots was higher (70%) for 15N taken up during and after anthesis than for 15N taken up at the end of floret initiation (45%), except for plants grown on the lowest N supply. By contrast, remobilization of 15N from the stem was lower for 15N taken up after full anthesis (40%) than before or during anthesis (>70%). The proportion of 15N remobilized from the top third of the stem was less than that from the bottom third, and decreased with increasing plant N status. Nitrogen-15 taken up over the 3-day supply periods during anthesis contributed from 2 to 11% of the total seed N at maturity; the contribution to seeds was greatest for plants grown on the highest N supply. Nitrogen taken up just before and during anthesis contributed most of the N accumulated in mature seeds of plants grown on an adequate N supply, but N taken up between the end of floret initiation and just before anthesis, or after full anthesis seemed to make an equally important contribution to mature seeds as N taken up during anthesis for plants grown on a very low N supply. It was concluded that the development of florets and seeds of sunflower is supported by N taken up by the plant between the end of floret initiation and anthesis, and by N redistributed from vegetative organs. Unless soil N is so low as to impair early growth, split applications of N fertilizer would be best made just before the end of floret initiation (‘star stage’) and just before anthesis.  相似文献   

7.
We studied the impact of delayed leaf senescence on the functioning of plants growing under conditions of nitrogen remobilization. Interactions between cytokinin metabolism, Rubisco and protein levels, photosynthesis and plant nitrogen partitioning were studied in transgenic tobacco (Nicotiana tabacum L.) plants showing delayed leaf senescence through a novel type of enhanced cytokinin syn‐thesis, i.e. targeted to senescing leaves and negatively auto‐regulated (PSAG12IPT), thus preventing developmental abnormalities. Plants were grown with growth‐limiting nitrogen supply. Compared to the wild‐type, endogenous levels of free zeatin (Z)‐ and Z riboside (ZR)‐type cytokinins were increased up to 15‐fold (total ZR up to 100‐fold) in senescing leaves, and twofold in younger leaves of PSAG12IPT. In these plants, the senescence‐associated declines in N, protein and Rubisco levels and photosynthesis rates were delayed. Senescing leaves accumulated more (15N‐labelled) N than younger leaves, associated with reduced shoot N accumulation (–60%) and a partially inverted canopy N profile in PSAG12IPT plants. While root N accumulation was not affected, N translocation to non‐senescing leaves was progressively reduced. We discuss potential consequences of these modified sink–source relations, associated with delayed leaf senescence, for plant productivity and the efficiency of utilization of light and minerals.  相似文献   

8.
Laue G  Preston CA  Baldwin IT 《Planta》2000,210(3):510-514
Nicotiana repanda Wildenow ex Lehmann acylates nornicotine in its trichomes to produce N-acyl-nornicotine (NacNN) alkaloids which are dramatically more toxic than nicotine is to the nicotine-adapted herbivore, Manduca sexta. These NacNNs, like nicotine, were induced by methyl jasmonate (MeJA) and wounding, but the 2-fold increase in NacNN pools was much faster (within 6 h) than the MeJA-induced increase in nornicotine pools (24 h to 4 d), its parent substrate. When 15NO3 pulse-chase experiments with intact and induced plants were used to follow the incorporation of 15N into alkaloids in different plant parts over the plant's lifetime, it was found that the root nicotine pool was most rapidly labeled, followed by the shoot nornicotine and NacNN pools. After 3 d, 3.12% of 15N acquired was in nicotine (0.93%), nornicotine (0.32%) and NacNNs (1.73%) while only 0.14% was in anabasine. Once NacNNs are externalized to the leaf surface, they are not readily re-distributed within the plant and are lost with senescing leaves. The wound- and MeJA-induced N-acylation of nornicotine is independent of induced changes in nornicotine pools and the rapidity of the response suggests its importance in defense against herbivores. Received: 3 July 1999 / Accepted: 17 September 1999  相似文献   

9.
The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both 15N2 and 13C‐depleted CO2 on exclusively nitrogen‐fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root‐derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2‐fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post‐labelling period. In summary, our study indicated that during the first week of regrowth, root‐derived C and N remobilization did not overcome C‐ and N‐limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re‐established.  相似文献   

10.
Phosphorus stress effects on assimilation of nitrate   总被引:13,自引:3,他引:10       下载免费PDF全文
An experiment was conducted to investigate alterations in uptake and assimilation of NO3 by phosphorus-stressed plants. Young tobacco plants (Nicotiana tabacum [L.], cv NC 2326) growing in solution culture were deprived of an external phosphorus (P) supply for 12 days. On selected days, plants were exposed to 15NO3 during the 12 hour light period to determine changes in NO3 assimilation as the P deficiency progressed. Decreased whole-plant growth was evident after 3 days of P deprivation and became more pronounced with time, but root growth was unaffected until after day 6. Uptake of 15NO3 per gram root dry weight and translocation of absorbed 15NO3 out of the root were noticeably restricted in −P plants by day 3, and effects on both increased in severity with time. Whole-plant reduction of 15NO3 and 15N incorporation into insoluble reduced-N in the shoot decreased after day 3. Although the P limitation was associated with a substantial accumulation of amino acids in the shoot, there was no indication of excessive accumulation of soluble reduced-15N in the shoot during the 12 hour 15NO3 exposure periods. The results indicate that alterations in NO3 transport processes in the root system are the primary initial responses limiting synthesis of shoot protein in P-stressed plants. Elevated amino acid levels evidently are associated with enhanced degradation of protein rather than inhibition of concurrent protein synthesis.  相似文献   

11.
Resource-based tradeoffs in the allocation of a limiting resource are commonly invoked to explain negative correlations between growth and defense in plants, but critical examinations of these tradeoffs are lacking. To rigorously quantify tradeoffs in a common currency, we grew Nicotiana attenuata plants in individual hydroponic chambers, induced nicotine production by treating roots with methyl jasmonate (MJ) and standardized leaf puncturing, and used 15N to determine whether nitrogen-based tradeoffs among nicotine production, growth, and seed production could be detected. Plants were treated with a range of MJ quantities (5, 45 or 250 μg plant?1) to effect a physiologically realistic range of changes in endogenous jasmonic acid levels and increases in nicotine production and accumulation; MJ treatments were applied to the roots to target JA-induced nicotine production, since nicotine biosynthesis is restricted to the roots. Leaf puncturing and 5 μg MJ treatments increased de novo nicotine synthesis and whole-plant (WP) nicotine pools by 93 and 66%, while 250 μg MJ treatments increased these values 3.1 and 2.5-fold. At these high rates of nicotine production, plants incorporated 5.7% of current nitrogen uptake and 6.0% of their WP nitrogen pools into nicotine. The 15N-labeled nicotine pools were stable or increased for the duration of vegetative growth, indicating that the N-nicotine was not metabolized and re-used for growth. Plants with elevated nicotine production grew more slowly and the differences in plant biomass gain between MJ-treated plants and controls were linearly related to the differences in nicotine accumulation. Despite the reductions in rosette-stage growth associated with nicotine production, estimates of lifetime fitness (cumulative lifetime seed production, mass/seed, seed viability) were not affected by any treatment. Only two treatments (leaf puncturing and 250 μg MJ) increased the allocations of 15N acquired at the time of induction to seed production. On average, plants used only 14.9% of their WP nitrogen pool for seed production, indicating that either the nitrogen requirements for seed production or the reproductive effort of these hydroponically-grown plants are low. To determine if seed production is strongly influenced by the amount of vegetative biomass attained before reproduction, the experiment was repeated with plants that had 44% of their leaf area (or 29% of their WP biomass) removed before MJ treatments with a removal technique that minimized the nicotine response. MJ treatments of these plants dramatically increased nicotine production and accumulation, but these plants also suffered no measurable fitness consequences from either the leaf removal or MJ treatments. We conclude that when N. attenuata plants are grown in these individual hydroponic chambers, their allocation to reproduction is sufficiently buffered to obscure the large increases in nitrogen allocations to an inducible defense. To determine whether soil-grown plants are similarly buffered, we grew two genotypes of plants in the high-nutrient soil from a 1-year-old burn in a piñyon-juniper forest (the plants' natural habitat) and in low-nutrient soil from an adjacent unburned area, and induced nicotine production in half of the plants with a 500 μg root MJ treatment. Plants grown in burned soils had an estimated lifetime fitness that was on average 2.8-fold greater than that of plants grown in unburned soils. MJ treatment reduced fitness estimates by 43% and 71% in the burned and unburned soils, respectively. We conclude that while hydroponic culture allows one to rigorously quantitate nitrogen allocation to growth, reproduction and defense, the allocation patterns of plants grown in hydroponic culture differ from those of plants grown in soil. Under hydroponic conditions, plants have low reproductive allocations and reproductive-defense tradeoffs are not detected. Reproductive-defense tradeoffs are readily discernible in soil-grown plants, but under these growing conditions, the nitrogen-basis for the tradeoff is difficult to quantify.  相似文献   

12.
 Three-year-old Norway spruce trees were planted into a low-nitrogen mineral forest soil and supplied either with two different levels of mineral nitrogen (NH4NO3) or with a slow-release form of organic nitrogen (keratin). Supply of mineral nitrogen increased the concentrations of ammonium and nitrate in the soil solution and in CaCl2-extracts of the rhizosphere and bulk soil. In the soil solution, in all treatments nitrate concentrations were higher than ammonium concentrations, while in the soil extracts ammonium concentrations were often higher than nitrate concentrations. After 7 months of growth, 15N labelled ammonium or nitrate was added to the soil. Plants were harvested 2 weeks later. Keratin supply to the soil did not affect growth and nitrogen accumulation of the trees. In contrast, supply of mineral nitrogen increased shoot growth and increased the ratio of above-ground to below-ground growth. The proportion of needle biomass to total above-ground biomass was not increased by mineral N supply. The atom-% 15N was higher in younger needles than in older needles, and in younger needles higher in plants supplied with 15N-nitrate than in plants supplied with 15N-ammonium. The present data show that young Norway spruce plants take up nitrate even under conditions of high plant internal N levels. Received: 1 April 1998 / Accepted: 9 October 1998  相似文献   

13.
Jasmonic acid (JA) is part of a long-distance signal-transduction pathway that effects increases in de-novo nicotine synthesis in the roots of Nicotiana sylvestris Speg et Comes (Solanaceae) after leaf wounding. Elevated nicotine synthesis increases whole-plant nicotine pools and makes plants more resistant to herbivores. Leaf wounding rapidly increases JA pools in damaged leaves, and after a 90-min delay, root JA pools also increase. The systemic response in the roots could result from either: (i) the direct transport of JA from wounded leaves, or (ii) JA synthesis or its release from conjugates in roots in response to a second, systemic signal. We synthesized [2-14C]JA, and applied it to a single leaf in a quantity (189 μg) known to elicit both a whole-plant nicotine and root JA response equivalent to that found in plants subjected to leaf wounding. We quantified radioactive material in JA, and in metabolites both more and less polar than JA, from treated and untreated leaves and roots of plants in eight harvests after JA application. [2-14C]Jasmonic acid was transported from treated leaves to roots at rates and in quantities equivalent to the wound-induced changes in endogenous JA pools. The [2-14C]JA that had been transported to the roots declined at the same rate as endogenous JA pools in the roots of plants after leaf wounding. Most of the labeled material applied to leaves was metabolized or otherwise immobilized at the application site, and the levels of [2-14C]JA in untreated leaves did not increase over time. We measured the free JA pools before and after four different hydrolytic extractions of root and shoot tissues to estimate the size of the potential JA conjugate pools, and found them to be 10% or less of the free JA pool. We conclude that the direct transport of wound-induced JA from leaves to roots can account for the systemic increase in root JA pools after leaf wounding, and that metabolism into less polar structures determines the duration of this systemic increase. However, the conclusive falsification of this hypothesis will require the suppression of all other signalling pathways which could have shoot-to-root transport kinetics similar to that of endogenous JA. Received: 14 April 1997 / Accepted: 9 June 1997  相似文献   

14.
In tobacco plants the net uptake of sulphate and its transport to the shoot were determined after cultivation with low, normal, and high sulphate supply. The relative amount of the sulphate taken up that was transported to the shoot was used as a measure of xylem loading. Net uptake of sulphate and its transport to the shoot were low in tobacco plants grown with low sulphate, and high in plants cultivated with high sulphate. Xylem loading, however, was relatively low in tobacco plants grown with high sulphate and relatively high in tobacco plants grown with low sulphate supply. Pre-culture in low sulphate containing nutrient solution also resulted in a high proportion of the absorbed sulphate being transported into the xylem if normal sulphateconcentration was supplied afterwards. Fumigation with H2S or SO2 reduced net uptake of sulphate in tobacco plants grown with normal, but not with high sulphate supply. Sulphate transport to the shoots was diminished by H2S or SO2 fumigation in tobacco plants grown with normal and high sulphate supply. Also the relative amount of the sulphate taken up that was transported to the shoot was lowered by fumigation with H2S or SO2 in tobacco plants grown with normal sulphate supply. Apparently, the diminished sulphate transport to the shoot upon H2S or SO2 fumigation can only partially be explained by a smaller sulphate uptake. Sulphur nutrition of tobacco plants also seems to be controlled by xylem loading of sulphate. The possible role of glutathione as a signal regulating sulphur nutrition of tobacco plants upon fumigation with H2S and SO2 is discussed.  相似文献   

15.
Aspects of nitrogen uptake and distribution in maize   总被引:1,自引:0,他引:1  
The amount of nitrogen (N) taken up after treatment decreased by nearly 50% when either the top five or middle four leaf laminae of maize (Zea mays) plants were removed shortly after flowering, and by 70% when both the middle four and bottom six laminae were removed, but the amount of N moving from the remaining parts of the shoot to the grain did not change much. When all the laminae were removed little N was taken up and only 35% as much N as in untreated plants moved from the shoot to the grain. Removal of all the laminae increased the N content per cent of dry weight of both grain and shoot at final harvest, but the other treatments did not have much effect on the N concentration of any of the parts of the shoot. Plants bearing grain, whether intact or with alternate laminae removed (half-defoliated) at the time of flowering, took up N approximately in proportion to their increase in dry weight during the 4 wk after flowering. The N taken up went to the ear (husks, core and grain) and so did N from the stem and leaves. Intact and half-defoliated plants with no developing grains, because pollination had been prevented, took up no N during this period, though they accumulated about as much dry matter as did plants with grain; the N increment of the husks and core was supplied by the stem and leaves. At final harvest total and grain N content of plants per unit area of land increased by 20 and nearly 30%, respectively, with increase in population between 2·3 and 6·1 plants/m2, but apparently fell slightly with further increase of population to 7·4 plants/m2. Until shortly after flowering N uptake was rapid enough to maintain similar N contents per cent of dry weight of the parts of the shoot in all populations. Uptake continued at a steady rate, though a slower one than before flowering, until near the time of final harvest in the most widely spaced population. In the denser populations uptake slowed down progressively after flowering, and in the densest population it apparently ceased a few weeks before final harvest. The N concentration of the grain of maturing plants fell with increase of population, but not that of the other parts of the shoot. At final harvest N content of the grain decreased from 1·6% in the most widely spaced to 1·2% in the densest population. That of the rest of the shoot varied between 0·70 and 0·79%. Between 6 and 18 wk after sowing, N content per unit area of green parts of the leaf laminae decreased only slightly, changing from about 20 to 18 mg/dm2 with 2·3 plants/m2, 18 to 16 mg/dm2 with 3·5 plants/m2, and 16 to 13 mg/dm2 in populations between 4·8-7·4 plants/m2.  相似文献   

16.
Duplicate feeding experiments of dl-ornithine-2-14C to the excised tobacco root culture were made, and the radioactive nornicotine was isolated. Approximately two thirds of the radioactivity was located in the 2-position of the pyrrolidine of the nornicotine in these experiments. This fact indicates that there are two modes in nornicotine biosynthesis: exclusive incorporation to the C-2 and equal incorporation to C-2 and C-5 from C-2 of ornithine.

On the basis of this finding, biosynthetic route was discussed.

dl-Ornithine-2-14C, dl-methionine-14CH3 and partially racemized l-nornicotine-2,5-14C were administered to aseptically grown excised roots (N. rustica var. Brasilia). Incorporation of their radioactivity to nicotine was compared. The extent of their radioactive incorporation to nicotine was high in the order of ornithine, methionine and nornicotine; incorporation of radioactivity of nornicotine to nicotine was extraordinarily low. 15N-Labeled nornicotine was also fed to the same materials and 15N distribution was examined. Most of 15N still remained in the nornicotine reisolated. Marked amounts of 15N were located in the ethanol-insoluble fraction, the amino acid fraction and the substances having chromatographic RF value close to that of nicotine. Only small amount of 15N was incorporated to the isolated nicotine.

Nornicotine is generally accepted to be a direct precursor of nicotine in tobacco plants. From these findings, however, it can be said that the biosynthesis of nicotine can occur through other routes without going through nornicotine.  相似文献   

17.
During vegetative regrowth of Medicago sativa L., soil N, symbiotically fixed N2 and N reserves meet the nitrogen requirements for shoot regrowth. Experiments with nodulated or non-nodulated plants were carried out to investigate the changes in N flows originating from the different N sources and in xylem transport of amino acids during regrowth. Exogenous N uptake, N2 fixation and endogenous N remobilization were estimated by 15N labelling and amino acids in xylem sap were analysed. Removal of shoots resulted in great declines of exogenous N flows derived either from N2 or from NH4NO3 during the first week of regrowth, thereafter recovery increased linearly. Mineral N uptake as well as N2 fixation occurred mainly between the 10th and 18th day after removal of shoots while exogenous N assimilation in intact plants remained at a steady level. Nitrogen remobilization rates in defoliated plants increased by at least three to five-fold, especially during the first 10 days following shoot removal. Compared to control plants, contents of amino acids in xylem sap, during the first 10 days of regrowth, were reduced by about 72% and 82% in NH4NO3 grown and in N2 fixing plants, respectively. Asparagine was the main amino acid transported in xylem sap of both treated plants. Its relative contents during this period significantly decreased from 75% to 59% and from 67% to 36% respectively in non-nodulated plants and in nodulated ones. This decline was accompanied by compensatory increase in the relative contents of aspartate and glutamine.  相似文献   

18.
The natural cytokinin import from the root into the shoot of Urtica dioica plants was enhanced by supplying zeatin riboside (ZR) solutions of various concentrations to a portion less than 10 % of the root system after removal of their tips. After 6 h ZR pretreatment of the plants, 14CO2 was supplied for 3 h to a mature (source) leaf or to an expanding leaf and the 14C-distribution in the whole plant was determined after a subsequent dark period of 14 h. ZR substantially increased 14C fixation by the expanding leaves and also enhanced export of carbon and transport to the shoot apex. The effect of the hormone treatment was, however, more pronounced when the 14CO2 was supplied to a mature leaf. In the control plants these leaves exported carbon only to the roots: When the amount of the natural daily ZR input from the roots to the shoot was enhanced by 20%, the bulk of the 14C exported from a mature leaf moved to the shoot apex and only a minor portion of 14C was still detected in the root fraction. A several-fold increase of the natural daily ZR input into the shoot resulted in a flow of 14C only to the growing parts of the shoot. The results suggest control of the sink strength of the shoot apex by ZR in Urtica diocia.  相似文献   

19.
Senescence of shoot apices of Pisum sativum L. ‘Alaska’ as measured by cessation of stem elongation was delayed by removal of flowers. Analyses of total RNA, nitrogen, protein and inorganic phosphorus in shoot tips of deflowered and control (flower- and fruit-bearing) plants throughout ontogeny revealed that the levels of all these metabolites declined during senescence. Also throughout ontogeny shoot tips of control and deflowered plants were compared with respect to their ability to enzymically degrade RNA and to take up and incorporate P32-orthophosphate into RNA. The specific activity of ribonuclease increased as senescence progressed while the absolute activity appeared to decrease in correlation with a decrease in total nitrogen content. Compared with nonsenescing shoot tips, senescing shoot tips accumulated less P32 but exhibited an apparent enhancement of P32 incorporation into RNA, which was attributed to a reduction in the endogenous phosphorus pool causing a smaller dilution of the accumulated P32. It is concluded that decreases in the levels of RNA, protein and inorganic phosphorus and in the tran-spirational uptake of nutrients are factors correlated with senescence of the shoot apex.  相似文献   

20.
Summary A pot experiment was carried out using a Bangladesh sandy loam paddy soil of pH 6.9 to compare the rates at which nitrogen from Azolla and ammonium sulphate was available to a high yielding rice variety, IR8, grown for 60 days in pots with 4 cm standing flood water.15N tracer studies confirm that nitrogen from ammonium sulphate was more available to the rice plants than from Azolla. An application of 6, 9 and 18 mg N of Azolla pot–1 (each pot contained 250 g soil) increased shoot dry matter yields by 13, 29 and 49% for an uptake of 19, 36 and 85% more nitrogen; the corresponding increases on using ammonium sulphate were 33, 54 and 114% for an increased uptake of 57, 90 and 177% more nitrogen, respectively. About 34% of applied15N of Azolla was taken up by the rice plants in 60 days but 61% of15N of the ammonium sulphate was absorbed during this period. About 45% of the Azolla-N was released in 60 days, 55% remained in the soils as undecomposed material and 11% was lost as gas. The gaseous loss of15N from ammonium sulphate was 14%; 25% remained in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号