首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Striga hermonthica is a serious root parasite of sorghum in the semiarid tropics. Successful parasitism is dependent on interactions of Striga seeds and host roots. Several sorghum cultivars have been found which resist parasitism. The basis of resistance is not well known. One possible method for reducing the chances of parasitism is by restricted host root development. This research was conducted to evaluate this hypothesis in sorghum known to possess resistance to parasitism by Striga.Root length density of 21-day-old pot-grown resistant cultivars, Framida, N-13, IS-9830, Tetron and P-967083, were compared to that of the susceptible check, Dabar, using the line intercept method of measuring root length. There was no significant difference between resistant cultivars and the susceptible cultivar Dabar. The RLD of resistant P-967083 however was significantly less than Framida, another resistant cultivar.The RLD of Dabar was compared to that of Framida and P-967083 in USA and Niger field trials. Root length density was determined on soil cores taken at flowering with a Giddings Soil Sampler. Each core was divided into 10-cm fractions for estimating RLD by the line intercept method. In the USA Dabar had significantly greater RLD than the two resistant cultivars in the upper 10-cm portion of the soil profile, but only significantly greater than P-967083 in the 10–20-cm portion. Significant differences in RLD between susceptible and resistant cultivars were not found at depths between 20–60 cm. In field trials in Niger, RLD of Dabar was significantly greater than either resistant cultivar in the (0 to 30 cm) portion of the soil core. These results suggest that part of the Striga resistance of P-967083 and perhaps Framida may be a result of avoiding interactions between parasitic seeds and host roots.  相似文献   

2.
Fate G  Chang M  Lynn DG 《Plant physiology》1990,93(1):201-207
Striga asiatica (Scrophulariaceae), a member of a heterogeneous group known as the parasitic plants, is totally dependent on host root attachment for survival. In agar, Striga seeds germinated in high percentages within 5 millimeters of a sorghum (Sorghum bicolor (L.) Moench) host root surface, and no germination was observed at distances greater than 1 centimeter. This spatially restricted germination may be explained by the chemistry of a single compound, 2-hydroxy-5-methoxy-3-[8′Z, 11′Z)-8′, 11′, 14′ -pentadecatriene]-p-hydroquinone, structure 1, which is exuded by sorghum roots. The presence of the compound was chemically imaged with pigments such as methylene blue. The use of methylene blue suggested that structure 1 was exuded along the entire surface of the root for long periods. This exudation and the inherent instability of structure 1 together establish an apparent steady state concentration gradient of the germination stimulant around the sorghum root. The Striga seed must be exposed to micromolar concentrations of 1 for ≥5 hours before high germination percentages were observed. Such a requirement for a long term exposure to a steady state concentration of an inherently labile, exuded compound would provide an extra degree of resolution to signal detection and host commitment in Striga parasitism.  相似文献   

3.
Gas exchange characteristics are reported for both members of the sorghum-Striga host-parasite association. Both Striga hermonthica (Del.) Benth and Striga asiatica (L.) Kuntze had transpiration rates considerably in excess of those of sorghum (Sorghum bicolor (L.) Moench, cv CSH1). Stomatal conductance in both Striga spp. showed little response to periods of darkness and moderate water stress. Low rates of net CO2 fixation and high rates of dark respiration led to no net daily (24 hours) C gain, and Striga would appear to be reliant on its host for photosynthate. Infection of sorghum plants with either S. hermonthica or S. asiatica reduced host photosynthetic capacity. Infected sorghum plants were also more prone to water stress, but reduced rates of CO2 fixation could not be accounted for in terms of lower stomatal conductance. Lower stomatal conductances were associated with an increase in water use efficiency (WUE) in uninfected sorghum; however, Striga-infected sorghum plants had lower WUE than those of uninfected plants. We suggest that Striga exerts a specific effect on processes affecting C acquisition in sorghum leaves. The water relations of S. hermonthica and S. asiatica are not characteristic of plants growing in semiarid environments and are more likely to reflect the nature of the parasitic life-style. Despite transfer of water and solutes from host to parasite, the reduction in C fixation observed in infected sorghum plants appears to be the major determinant of growth reductions observed in sorghum supporting Striga.  相似文献   

4.
Striga-resistant maize inbred lines are of interest to maize breeding programs in the savannas of Africa where the parasitic weed is endemic and causes severe yield losses in tropical maize. Assessment of the genetic diversity of such inbred lines is useful for their systematic and efficient use in a breeding program. Diversity analysis of 41 Striga-resistant maize inbred lines was conducted using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers to examine the genetic relationships among these lines and to determine the level of genetic diversity that exists within and between their source populations. The two marker systems generated 262 and 101 polymorphic fragments, respectively. Genetic similarity (GS) values among all possible pairs of inbred lines varied from 0.45 to 0.95, with a mean of 0.61±0.002 for AFLPs, and from 0.21 to 0.92, with a mean of 0.48±0.003, for SSRs. The inbred lines from each source population exhibited a broad range of GS values with the two types of markers. Both AFLPs and SSRs revealed similar levels of within population genetic variation for all source populations. Cluster and principal component analysis of GS estimates with the two markers revealed clear differentiation of the Striga-resistant inbred lines into groups according to their source populations. There was clear separation between early- and late-maturing Striga-resistant inbred lines. Considering the paucity of germplasm with good levels of resistance to Striga in maize, the broad genetic diversity detected within and among source populations demonstrates the genetic potential that exists to improve maize for resistance to Striga.  相似文献   

5.
Two cultivars of sorghum (CK60 and Ochuti) and one cultivarof maize (H511) were grown in field plots in western Kenya inthe presence or absence of the parasitic angiosperm Striga hermonthica,with or without a single addition of nitrogen fertilizer (150kg N ha–1) using a factorial design. A progressive declinein rates of photosynthesis of Striga-infected plants were observedfor the sorghum cultivar CK60 from 30 d after planting (DAP)and for maize from 40 DAP, until measurements ended 63 DAP.At this time photosynthetic rates were 46% and 31% lower inthe Striga-infected sorghum and maize cultivars, respectively,compared to uninfected control plants. No decline in photosynthesiswas observed in the second sorghum cultivar studied, Ochuti,a local land race reported to show some tolerance to the parasite.The trends in photosynthesis reflected stunting of the cereals,as determined by the height of the youngest emerged ligule,however, only the grain yield of the sorghum cultivar CK60 wassignificantly reduced by the presence of the parasite. The nitrogenapplication influenced neither the growth nor the photosyntheticparameters measured, and possible explanations for the absenceof responses are discussed. It is concluded that S. hermonthicacan reduce photosynthetic rates of field-grown sorghum and maize,and suggest that an ability to maintain high rates of photosynthesiswhilst infected may be an important correlate of tolerance tothe parasite. Key words: Parasitic angiosperm, photosynthesis, nitrogen, tropical weeds, tropical agriculture  相似文献   

6.
Data were obtained from the research done in the Guinea Savanna (Zaria 11°11′N; 070 38′E) and Sudan Savanna (Maiduguri ?11°51′N; 13°15′E) regions of Nigeria, respectively on different cultural methods of Striga control and management. In the Guinea Savanna, trials on the effects of nitrogen on the response of resistant and susceptible upland rice varieties to Striga hermonthica infestation and the effect of resistant and susceptible varieties of maize and crop rotation on Striga infestation was carried out, while the effect of inter-cropping trap crop (Bambaranut) with resistant sorghum varieties on S. hermonthica was studied in the Sudan Savanna Zone of Nigeria. In the Guinea Savanna, it was observed that a combination of upland rice variety, Faro 40 and an application of 90 kg N/ha in the wet season and WAB 56-50 upland rice variety and 120 kg N/ha in the dry season, respectively reduced Striga infestation and produced maximum grain yield. Also, the growing of resistant variety of maize (Across 97ITZ comp. I-W) after 1 or 2 years' rotation with cowpea or soybean was observed not only to be effective in Striga control, but resulted in higher grain yield of maize. In the Sudan Savanna, the use of resistant varieties of sorghum, 1CSV1002 and 1CSV1007 intercropped with bambaranut significantly reduced Striga infestation, but the grain yield of the resistant varieties was low. From these studies, Faro 40 with 90 kg N/ha application rate and WAB56–50 with 120 kg N/ha were suitable for the management of Striga and for higher grain yield of upland rice in both wet and dry seasons, respectively, while Across 97ITZ comp. I-W, resistant maize variety and 1 or 2 years rotation with cowpea or soybean were also the best for the management of S. hermonthica and for higher maize yield in the Guinea Savanna zone. Further research needs to be carried out in the Sudan Savanna to select a high yielding resistant variety of sorghum which when intercropped with bambaranut will not only control Striga infestation but will also give high grain yield.  相似文献   

7.
Grain mold and rust are diseases that can significantly reduce sorghum grain yield. Breeding for resistance to these diseases is hindered by inefficient disease screening. A viable option to greatly improve breeding efficiency is to identify molecular markers or genes linked to the host resistance. In this study, we applied 14,739 single nucleotide polymorphism markers to the sorghum mini core of 242 accessions that had been evaluated for rust resistance in both greenhouse and field and for grain mold in the field for 2 years. Through association mapping we have identified two loci linked to grain mold resistance and five loci linked to rust resistance. Among the two loci linked to grain mold resistance, one contained a homolog of the maize nonhost resistance gene Rxo1. Two of rust-linked loci each contained the rust resistance gene homologous to the maize rust resistance gene Rp1-D which is the B locus (the A locus containing Pu was not linked in this study) and to the wheat rust resistance gene Lr1. The remaining loci contained genes important in other steps of the defense response, such as cyclophilins that mediate resistance response preceding hypersensitive response (HR) and Hin1 directly involved in producing HR. The results from this study will facilitate marker-assisted selection of host resistance to grain mold and rust in sorghum.  相似文献   

8.
Two sorghum cultivars: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88–97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.Key Words: arbuscular mycorrhiza, root exudate, sorghum, striga, strigolactones, germination  相似文献   

9.
Ten sorghum cultivars were studied for their mode of Strigaparasitization, and the factors conferring resistance in resistantcultivars most of the Striga haustona failed to penetrate beyondthe endodermis, whereas in susceptible cultivars the haustonapenetrated the endodermis and became established Resistant cultivars showed marked endodermal and pencyclic thickeningand the deposition of silica in their endodermal cells, whichwere lacking in the susceptible cultivars Extra thickening inpencyclic cells as a response to the entrance of haustonum wasobserved in cultivars N-13 and IS-4202 Ten cultivars studied showed differential haustorial reactionsThese reactions included extra thickening in the pericycle inresponse to haustonal infestation, haustonal collapse, tylosts-likeocclusions in the xylem vessels, and the deposition of dark-stainingmaterials in the cortex Although no definite conclusion couldbe drawn regarding the relationship between the degree of mechanicaltissue development and field resistance, there was evidencethat some field-resistant cultivars have strong mechanical tissuesThere could, however, be other factors governing resistanceto Striga in the field Striga asiatica, sorghum, haustorium, anatomy, endodermis, pot test, host resistance mechanism, parasitization, susceptibility  相似文献   

10.
A time-course study of the early establishment stages of Striga asiatica was carried out on a susceptible sorghum hybrid, CSH 1, using polyethylene bags and whole-root clearing and staining techniques. Preconditioned Striga seeds were applied to different aged segments of primary root but the results did not differ for these different aged segments. Most of the Striga seeds (63%) germinated within 24 h of inoculation on the host roots. The attachment of Striga radicles to host root was rapid and it occurred between 36 and 48 h after inoculation. Only 9% of the germinated Striga seeds attached to the host root but 65% of these attachments successfully penetrated through the epidermis and entered the host cortex within 72 h. Penetration through the cortical cells was difficult; only 17% of attachments were able to reach the endodermis. Penetration took from 12 to 43 h after the first appearance of haustorial cells in the cortex; a total of 84 to 120 h after inoculation on the host root. Penetration through the endodermis and establishment on the host stele was relatively easier, as most of the haustoria reaching the endodermis were able to establish on the host stele. But this is a slow process taking a minimum of 24 h, and a maximum of 60 h after first contact of haustorial cells with the endodermis. The minimum time taken from inoculation of ungerminated Striga seed on the host root to establishment is about 108 h. The results are discussed in relation to published reports on other parasitic species such as Agalinis purpurea.  相似文献   

11.
The biology of the Striga species will be briefly described. Pot experiments indicate that damage to the host plant is very much greater than is explained by removal of photosynthates. A phytotoxin is almost certainly involved, which causes decreased shoot growth of the host plant but which also directly or indirectly encourages increased root growth. The significance of this change in root/shoot ratio will be discussed in relation to host resistance and various control measures.  相似文献   

12.
A glasshouse experiment was carried out to investigate the factorscontrolling the abstraction of xylem fluid from its host bythe parasiteStriga hermonthica(Scrophulariaceae).Strigahad amean daily transpiration rate far exceeding that of its hostsorghum (Sorghum bicolor), with infestation byStrigaalso shownto lower the transpiration rate of the host. Stopping the host'stranspiration was shown to decrease the transpiration rate ofthe parasite. Stopping the parasite's transpiration only gavean initial increase in the host's transpiration rate which wasnot sustained. The parasite had a lower water potential thanits host, values being -0.42 MPa and -0.23 MPa, respectively,and an accompanying higher osmotic pressure of 0.68 MPa against0.51 MPa for sorghum. Modifying the water potential gradientby bagging both partners together showed that the differentialin osmotic pressure and water potential was largely maintainedby the parasite's higher rate of transpiration. A favourablewater potential gradient towards the parasite still existedfollowing the cessation of transpiration, this being generatedby the haustorial resistance to hydraulic conductivity whichwas found to be some 1.5–4.5 times greater than that offeredby the parasite shoot. Both the high rate of transpiration andthe increased resistance across the haustoria would appear tobe necessary means to facilitate the diversion of host resourcesto the parasite.Copyright 1997 Annals of Botany Company Striga hermonthica; sorghum; water relations; haustorium; root parasite  相似文献   

13.
《Experimental mycology》1992,16(3):219-229
Various morphological and genetic characteristics were compared among six isolates ofColletotrichum from maize and six from sorghum. For the first time, a teleomorph was induced in sorghum isolates by pairing them on autoclaved sorghum leaves in a humidity chamber. The sorghum teleomorph was morphologically similar toGlomerella graminicola andGlomerella tucumanensis, the teleomorphs ofColletotrichum isolates from maize and from sugarcane, respectively. Mating tests demonstrated thatGlomerella isolates from maize and sorghum were not interfertile. Several small but consistent differences in the morphologies of the isolates from maize and from sorghum were observed which agreed with earlier reports. DNA fingerprints detected as restriction fragment length polymorphisms of mitochondrial DNA and random polymorphic DNA (RAPD) produced from nuclear DNA by the polymerase chain reaction could be used to reliably and unambiguously distinguish members of the two groups of isolates. Results of a statistical analysis of similarity of the RAPD fingerprints suggested that maize and sorghum isolates ofColletotrichum are only about 45% similar (±10%) and represent two distinct and separate genetic lineages. We conclude that isolates ofColletotrichum from maize and sorghum are sibling species since they are morphologically very similar but reproductively completely isolated.  相似文献   

14.
Striga is a devastating parasitic weed in Africa and parts of Asia. Low Striga germination stimulant activity, a well-known resistance mechanism in sorghum, is controlled by a single recessive gene (lgs). Molecular markers linked to the lgs gene can accelerate development of Striga-resistant cultivars. Using a high density linkage map constructed with 367 markers (DArT and SSRs) and an in vitro assay for germination stimulant activity towards Striga asiatica in 354 recombinant inbred lines derived from SRN39 (low stimulant) × Shanqui Red (high stimulant), we precisely tagged and mapped the lgs gene on SBI-05 between two tightly linked microsatellite markers SB3344 and SB3352 at a distance of 0.5 and 1.5 cM, respectively. The fine-mapped lgs region was delimited to a 5.8 cM interval with the closest three markers SB3344, SB3346 and SB3343 positioned at 0.5, 0.7 and 0.9 cM, respectively. We validated tightly linked markers in a set of 23 diverse sorghum accessions, most of which were known to be Striga resistant, by genotyping and phenotyping for germination stimulant activity towards both S. asiatica and S. hermonthica. The markers co-segregated with Striga germination stimulant activity in 21 of the 23 tested lines. The lgs locus similarly affected germination stimulant activity for both Striga species. The identified markers would be useful in marker-assisted selection for introgressing this trait into susceptible sorghum cultivars. Examination of the sorghum genome sequence and comparative analysis with the rice genome suggests some candidate genes in the fine-mapped region (400 kb) that may affect strigolactone biosynthesis or exudation. This work should form a foundation for map-based cloning of the lgs gene and aid in elucidation of an exact mechanism for resistance based on low Striga germination stimulant activity.  相似文献   

15.
Diatraea lineolata and Diatraea saccharalis (Lepidoptera: Crambidae) are moths with stemboring larvae that feed and develop on economically important grasses. This study investigated whether these moths have diverged from a native host plant, corn, onto introduced crop plants including sorghum, sugarcane, and rice. Diatraea larvae were collected from these four host plants throughout the year in El Salvador and were reared on artificial diet until moths or parasitoids emerged. Adult moths were subsequently identified to species. Amplified fragment length polymorphisms (AFLPs) and mitochondrial DNA cytochrome oxidase I (COI) were used to examine whether or not there was genetic divergence of D. lineolata or D. saccharalis populations on the four host plants. Percent parasitism was also determined for each moth on its host plants. D. lineolata was collected from corn in the rainy season and sorghum in the dry season. D. saccharalis was most abundant on sugarcane in the rainy season and sorghum in the dry season. The AFLP analysis found two genetically divergent populations of both D. lineolata and D. saccharalis. Both moths had high levels of parasitism on their dominant host plant in the rainy season, yet had low levels of parasitism on sorghum in the dry season. The presence of two genotypes of both Diatraea spp. on sorghum suggest that host‐associated differentiation is occurring on this novel introduced crop plant.  相似文献   

16.
Microplitis demolitor Wilkinson is an important larval parasitoid ofHelicoverpa armigera (Hübner) andH. punctigera (Wallengren) in Australia. The effect of host plant on parasitism of second instarH. armigera byM. demolitor was investigated in a glasshouse experiment. Parasitism was low (0%) on chickpea. Moderate to high levels of parasitism (22.4% to 75.4%) were recorded on sorghum, sunflower, maize, cotton and soybean. The results suggest that releases of larval parasitoids into chickpea are unlikely to enhance parasitismlevels during the first spring generation ofHelicoverpa spp.  相似文献   

17.
Abstract

Pediobius furvus (Gahan) (Eulophidae: Hymenoptera) was recorded as a new pupal parasitoid (gregarious endo-parasitoid) of Sesamia cretica pupae (Led.) in El-Noubaria region (El-Beheira Governorate), Egypt. This study was conducted in maize and sorghum fields in El-Beheira and Giza Governorates in Egypt during 1994 and 1995. The percentage parasitism was 8.4 and 15.4% in August and September, respectively. The number of parasitoids emerging from one pupa ranged from 28 to 222. It has been concluded that this new species is a gregarious endo-parasitoid that pupates inside its host. Pediobius furvus has a high reproductive ability, which may afford mass production and enable mass release of the parasitoid to control S. cretica in maize fields.  相似文献   

18.
Sesamia nonagrioides Lefébvre (Lepidoptera: Noctuidae) has a fairly wide range of host plants. The present study tests the egg-laying preference of S. nonagrioides on four potential host plants (maize, sweet and fiber sorghum and johnsongrass) with respect to several life history traits. No-choice and two-choice tests in all possible combinations were conducted. Concerning no-choice tests, significantly higher number of eggs were laid on sweet sorghum (282.5 eggs/female) in relation to the other tested plants. Moreover, viability of eggs that were laid on sweet sorghum was significantly higher in relation to those that were laid on johnsongrass. Longevity of females reared on maize plants was significantly greater compared with the other test plants except johnsongrass. Furthermore, pre-oviposition period of females reared on maize was significantly longer (2.4-fold) compared with that on sweet sorghum and johnsongrass. Similarly post-oviposition period of females reared on maize was significantly longer compared with that on fiber sorghum. On two choice tests significantly fewer eggs were laid on sweet sorghum than on maize. On the other hand, significantly more eggs were laid on sweet sorghum than on fiber sorghum and johnsongrass. We discuss the potential of secondary hosts to be used as trap plants.  相似文献   

19.
Understanding the factors influencing host-selection behavior of parasitoids is essential in studies on host-parasitoid ecology and evolution, and in combining sustainable strategies of pest management, such as host-plant resistance and biological control. The effects of host-plant resistance on the olfactory response and parasitism success by Cotesia vestalis, a parasitoid of diamondback moth (Plutella xylostella) larvae were examined. Here, it was demonstrated that host-plant resistance can strongly influence foraging behavior and parasitism success of the parasitoid. In olfactometer experiments, C. vestalis did not differentiate between crucifer plant types with similar levels of susceptibility or resistance to P. xylostella but showed a strong preference for susceptible compared with partially-resistant host plants. The influence of previous oviposition activity varied with the host-plant type experienced by the parasitoid. In cage experiments, C. vestalis preferred to parasitize P. xylostella larvae on a susceptible plant compared with larvae on a partially resistant host plant when exposed to hosts for 24 h. However, this preference appeared to be transitory, and was not found after 96 h exposure. The present study suggests that combining partial host-plant resistance with biological control by C. vestalis for the control of P. xylostella may in some circumstances be antagonistic and negatively affect parasitism success.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号