首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CLAVATA3 (CLV3)/ESR-related (CLE) family of small polypeptides mediate intercellular signaling events in plants. The biological roles of several CLE family members have been characterized, but the function of the majority still remains elusive. We recently performed a systematic expression analysis of 23 Arabidopsis CLE genes to gain insight into the developmental processes they may potentially regulate during vegetative and reproductive growth. Our study revealed that each Arabidopsis tissue expresses one or more CLE genes, suggesting that they might play roles in many developmental and/or physiological processes. Here we determined the expression patterns of nine Arabidopsis CLE gene promoters in mature embryos and compared them to the known expression patterns in seedlings. We found that more than half of these CLE genes have similar expression profiles at the embryo and seedling stages, whereas the rest differ dramatically. The implications of these findings in understanding the biological processes controlled by these CLE genes are discussed.Key words: arabidopsis, CLE, embryo, polypeptide, signalingThe CLE genes encode small, secreted polypeptides characterized by a highly conserved 14 amino-acid region at their carboxyl termini called the CLE domain.1 To date 32 family members have been identified in Arabidopsis, yet only three have been assigned functions: CLV3, CLE40 and CLE41 have been implicated in stem cell homeostasis in shoot, root and vascular meristems, respectively.25 Overexpression studies indicated that CLE genes may regulate additional biological processes as diverse as root and shoot growth, phyllotaxis, apical dominance and leaf shape and size control.6,7 This hypothesis is consistent with our recent expression analysis of Arabidopsis A-type CLE genes,8 in which we found that all examined tissues expressed one or more CLE genes, in overlapping patterns. Each CLE promoter exhibited a highly distinct and specific activity profile, and many showed complex expression dynamics during vegetative and reproductive growth.Consistent with their roles in meristem maintenance, CLV3 and CLE40 are expressed early in embryogenesis when meristem initiation and organization take place.3,5 Yet there are no other reports of CLE gene expression in Arabidopsis embryos, and therefore it is not known to what extent this family of small peptides regulates intercellular signaling events during embryogenesis. We addressed this question by analyzing the expression patterns of selected CLE promoters in mature embryos and compared them with those in 11-day-old seedlings. We chose nine CLE genes whose promoters are active in different tissues of the seedling.8 Transgenic dried seeds carrying a single CLE promoter sequence driving the expression of the uidA reporter gene were imbibed in water for four days, the embryos dissected out of their seed coats, and beta-glucuronidase (GUS) reporter assays performed.9 Stained embryos were cleared with chloral hydrate10 and visualized using a Zeiss Axiophot microscope.Five of the CLE genes analyzed showed similar promoter expression patterns in mature embryos and in seedlings. In embryos, the CLE11, 13, 16 and 17 promoters drove GUS activity in specific patterns in the root. CLE11 and CLE13 promoter activity was detected in the root cap and root apical meristem (Fig. 1A and B), CLE16 promoter activity was observed in the root cap and above the root apical meristem (Fig. 1C), and CLE17 promoter activity was seen weakly in the root apical meristem (Fig. 1D). Each of these CLE genes exhibited a similar expression pattern in seedling roots.8 CLE17 was additionally expressed in the embryo shoot apex and at the cotyledon margins (Fig. 1D). Similarly, in seedlings CLE17 was expressed in the vegetative shoot apex, and at the margins of the cotyledons and fully expanded leaves.8 In embryos, CLE27 promoter activity was strong in the hypocotyl, as well as in the medial region of the cotyledons along the main vein (Fig. 1E). In seedlings, CLE27 was strongly expressed in the hypocotyl and exhibited patchy expression in both cotyledons and leaves.8 Our analysis reveals that the expression of these CLE genes is established early during development and remains constant at later stages, suggesting that they may perform the same function throughout the Arabidopsis life cycle.Open in a separate windowFigure 1GUS reporter activity driven by the promoters of (A) CLE11, (B) CLE13, (C) CLE16, (D) CLE17, (E) CLE27, (F) CLE1, (G) CLE12, (H) CLE18 and (I) CLE25 in mature Arabidopsis embryos. Arrowhead indicates GUS activity in the root cap and the arrow indicates GUS activity in the root apical meristem. Scale bar, 100 µm.Remarkably, the other four CLE promoters drove embryo expression patterns that were strongly divergent from what was observed in seedlings. We found that the CLE1 promoter was active in the embryo throughout the hypocotyl and in the central region of the cotyledons (Fig. 1F), but was observed in seedlings solely in the vasculature of fully differentiated roots and at the root tips.8 CLE12 promoter activity in embryos was observed throughout the hypocotyl and the cotyledons (Fig. 1G), whereas in seedlings it was detected weakly in the leaf vasculature and more strongly in the root vasculature.8 In contrast, the CLE18 and CLE25 promoters did not drive reporter activity in mature embryos (Fig. 1H and I), despite being broadly and strongly expressed in seedlings.8These four CLE gene promoters show dynamic shifts in their activity between different developmental stages. From our data we infer that CLE1 activity in hypocotyls and cotyledons is required solely during embryogenesis, and that the gene then acquires a distinct function in post-embryonic root development. Similarly CLE12 appears to acquire a post-embryonic function in the root vasculature, and its broad activity in the embryonic leaves becomes restricted to the leaf vasculature following germination. Finally, the absence of CLE18 and CLE25 promoter activity in mature embryos suggests that they may be dispensable for embryo formation, and might either specifically regulate post-embryonic signaling events in certain tissues or be involved in mediating responses to environmental stimuli to which embryos are not subjected. Alternatively, they may be expressed earlier during embryogenesis and become repressed during seed dormancy.Our spatio-temporal expression analysis of a small group of CLE genes in mature embryos and seedlings indicates that the majority of these signaling molecules exert their roles beginning early in development, potentially contributing to tissue patterning and organization. Yet whereas some appear to contribute to the same biological processes throughout the plant life cycle, others seem to function in different tissues at different developmental stages. In addition, each CLE promoter studied here is active in vegetative and/or reproductive tissues that are not present in embryos, such as trichomes (CLE16 and CLE17) and style (CLE1).8 This observation suggests that CLE genes are widely recruited to new tissue-specific signaling functions during the course of plant development.  相似文献   

2.
3.
CLE, which is the term for the CLV3/ESR-related gene family, is thought to participate in CLAVATA3-WUSCHEL (CLV3-WUS) and CLV3-WUS-like signaling pathways to regulate meristem activity in plant. Although some CLE genes are expressed in meristems, many CLE genes appear to express in a variety of tissues/cells. Here we report that CLE14 and CLE20 express in various specific tissues/cells outside the shoot/root apical meristem (SAM/RAM), including in highly differentiated cells, and at different developmental stages. Overexpressing CLE14 or CLE20 also causes multiple phenotypes, which is consistent with its expression pattern in Arabidopsis. These results suggest that CLE genes may play multiple roles and involve other signaling cascades in addition to the CLV3-WUS and CLV3-WUS-like pathways.Key words: CLE, CLAVATA3-WUSCHEL, cell signaling and development, root apical meristem, arabidopsisIntercellular communication and coordination between adjacent cell populations are critical for cell-fate specification, as well as for meristem organization and maintenance. In the shoot apical meristem (SAM), local signaling, which involves the CLAVATA3-WUSCHEL (CLV3-WUS) negative feedback loop, controls stem cell homeostasis and SAM activity.1 As well, it has been suggested that a CLV3-WUS-like negative feedback pathway operates to control root apical meristem (RAM) activity. This view is supported by the facts that a WUS-related homeobox gene, WOX5, is expressed in cells of the quiescent center (QC) in the RAM, and that loss-of-function of WOX5 in the QC leads to the differentiation of the adjacent root cap initials (RCI), whereas gain-of-function blocks the differentiation of derivatives of the RCI in the root.2 Additional support for the function in the RAM of a CLV3-WUS-like pathway, comes from observations that CLE genes (collectively referred to as the CLV3/ESR-relate gene family) are not only expressed in the RAM,3,4 but also, that overexpression of some CLE genes triggers premature termination of the RAM.5 In this regard it has been recently reported that CLE40, which expresses in the differentiating daughter cells of the distal root stem cells, restricts WOX5 expression and promotes differentiation of stem cells in the RAM.6 Taken together these data suggest a CLV3-WUS-like feedback loop acts to negatively regulate RAM activity in plants.Our previous results have shown that CLE14 and CLE20 express in specific cells of roots, and that overexpression of CLE14 or CLE20 in Arabidopsis triggers early termination of the RAM in a CLAVATA1 (CLV1)-independent, but CLAVATA2 (CLV2)-dependent manner.7,8 We also showed that both CLE14 and CLE20 peptides inhibit, irreversibly, root growth by reducing cell division rates in the RAM.7 CLV2 and CRN (a receptor-like protein kinase, also known as SOL2, isolated as a suppressor of root-specific overexpression of CLE19) are required for CLE14 and CLE20 peptide functions in vitro.9,10 Using computational modeling approaches we further demonstrated that 12-amino-acid CLE14 and CLE20 peptides may function through a potential heterodimer/heterotetramer CLV2-CRN complex.7CLV3 expresses exclusively in the stem cells of the SAM, and it has been consistently shown that the CLV3 peptide is required for homeostasis of the stem cells and for the maintenance of the SAM.1 Although some CLE genes are found to express in meristems, many CLE genes appear to express in an array of tissues and cells, including highly differentiated tissues/cells.3,4 In this report we show that CLE14 and CLE20 express in specific tissues outside the RAM and SAM of Arabidopsis, including highly differentiated cells, and at different developmental stages. Overexpressing CLE14 or CLE20 also causes multiple phenotypes, which is consistent with its expression pattern in Arabidopsis. These results suggest that CLE genes may play multiple roles in regulating the developmental fate of cells, which includes, but is not limited to, stem cells, and also may be involved in other signaling cascades in addition to the CLV3-WUS pathway.  相似文献   

4.
5.
In recent years, peptide hormones have been recognized as important signal molecules in plants. Genetic characterization of such peptides is challenging since they are usually encoded by small genes. As a proof of concept, we used the well-characterized stem cell-restricting CLAVATA3 (CLV3) to develop an antagonistic peptide technology by transformations of wild-type Arabidopsis (Arabidopsis thaliana) with constructs carrying the full-length CLV3 with every residue in the peptide-coding region replaced, one at a time, by alanine. Analyses of transgenic plants allowed us to identify one line exhibiting a dominant-negative clv3-like phenotype, with enlarged shoot apical meristems and increased numbers of floral organs. We then performed second dimensional amino acid substitutions to replace the glycine residue individually with the other 18 possible proteinaceous amino acids. Examination of transgenic plants showed that a glycine-to-threonine substitution gave the strongest antagonistic effect in the wild type, in which over 70% of transgenic lines showed the clv3-like phenotype. Among these substitutions, a negative correlation was observed between the antagonistic effects in the wild type and the complementation efficiencies in clv3. We also demonstrated that such an antagonistic peptide technology is applicable to other CLV3/EMBRYO SURROUNDING REGION (CLE) genes, CLE8 and CLE22, as well as in vitro treatments. We believe this technology provides a powerful tool for functional dissection of widely occurring CLE genes in plants.In animals, small peptides are important signal molecules in neural and endocrinal systems (Feld and Hirschberg, 1996; Edlund and Jessell, 1999). In recent years, over a dozen different types of peptide hormones have been identified in plants, regulating both developmental and adaptive responses, usually through interacting with Leu-rich repeat receptor kinases localized in plasma membranes of neighboring cells (Boller and Felix, 2009; De Smet et al., 2009; Katsir et al., 2011). These peptides are often produced from genes with small open reading frames, after posttranslational processing (Matsubayashi, 2011). In addition, peptide hormones, such as CLAVATA3/EMBRYO SURROUNDING REGION (CLV3/ESR [CLE]), systemin, PHYTOSULFOKINE, AtPEP1, and EPIDERMAL PATTERNING FACTOR1 (EPF1), often have paralogs in genomes (Cock and McCormick, 2001; Yang et al., 2001; Pearce and Ryan, 2003; Huffaker et al., 2007; Hara et al., 2007). Bioinformatics analyses revealed that the Arabidopsis (Arabidopsis thaliana) genome contains 33,809 small open reading frames (Lease and Walker, 2006).CLV3 acts as a secreted 12- or 13-amino acid glycosylated peptide (Kondo et al., 2006; Ohyama et al., 2009) to restrict the number of stem cells in shoot apical meristems (SAMs), through a CLV1-CLV2-SOL2 (for SUPPRESSOR OF LLP1 2, also called CORYNE)-RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) receptor kinase-mediated pathway (Clark et al., 1993; Jeong et al., 1999; Miwa et al., 2008; Müller et al., 2008; Kinoshita et al., 2010; Zhu et al., 2010). All CLE family members, of which there are 83 in Arabidopsis and 89 in rice (Oryza sativa), carry a putative signal peptide and share a conserved 12-amino acid core CLE motif (Oelkers et al., 2008). Overexpression of CLE genes often shows a common dwarf and short-root phenotype (Strabala et al., 2006; Jun et al., 2010), which may not reflect their endogenous functions. Due to redundancies and difficulties in identifying mutants of these small genes, studies of CLE members are challenging. Only a few CLE genes have been genetically characterized, in particular, CLV3, CLE8, CLE40, and CLE41 in Arabidopsis and FLORAL ORGAN NUMBER4 (FON4), FON2-LIKE CLE PROTEIN1 (FCP1), and FON2 SPARE1 in rice (Fletcher et al., 1999; Hobe et al., 2003; Chu et al., 2006; Suzaki et al., 2008, 2009; Etchells and Turner, 2010; Fiume and Fletcher, 2012), while functions of other CLE members remain unknown.As a proof of concept, we used the well-characterized CLV3 gene to develop an antagonistic peptide technology for functionally dissecting CLE family members in Arabidopsis. A series of constructs carrying Ala substitutions in every amino acid residue in the core CLE motif of CLV3, expressed under the endogenous CLV3 regulatory elements, were made and introduced to wild-type Arabidopsis by transformation. This allowed us to identify the conserved Gly residue in the middle of the CLE motif was vulnerable for generating the dominant-negative clv3-like phenotype. We then performed second dimensional amino acid substitutions to replace the Gly with all other 18 possible proteinaceous amino acids, one at a time, and observed that the substitution of the Gly residue by Thr generated the strongest dominant-negative clv3-like phenotype. Further experiments showed that this technology can potentially be applied to in vitro-synthesized peptides and for functional characterization of other CLE members.  相似文献   

6.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

7.
As the newest plant hormone, strigolactone research is undergoing an exciting expansion. In less than five years, roles for strigolactones have been defined in shoot branching, secondary growth, root growth and nodulation, to add to the growing understanding of their role in arbuscular mycorrhizae and parasitic weed interactions.1 Strigolactones are particularly fascinating as signaling molecules as they can act both inside the plant as an endogenous hormone and in the soil as a rhizosphere signal.2-4 Our recent research has highlighted such a dual role for strigolactones, potentially acting as both an endogenous and exogenous signal for arbuscular mycorrhizal development.5 There is also significant interest in examining strigolactones as putative regulators of responses to environmental stimuli, especially the response to nutrient availability, given the strong regulation of strigolactone production by nitrate and phosphate observed in many species.5,6 In particular, the potential for strigolactones to mediate the ecologically important response of mycorrhizal colonization to phosphate has been widely discussed. However, using a mutant approach we found that strigolactones are not essential for phosphate regulation of mycorrhizal colonization or nodulation.5 This is consistent with the relatively mild impairment of phosphate control of seedling root growth observed in Arabidopsis strigolactone mutants.7 This contrasts with the major role for strigolactones in phosphate control of shoot branching of rice and Arabidopsis8,9 and indicates that the integration of strigolactones into our understanding of nutrient response will be complex. New data presented here, along with the recent discovery of phosphate specific CLE peptides,10 indicates a potential role for PsNARK, a component of the autoregulation of nodulation pathway, in phosphate control of nodulation.  相似文献   

8.
9.
10.
11.
12.
The model plant Arabidopsis thaliana contains a large arsenal of secondary metabolites that are not essential in development but have important ecological functions in counteracting attacks of pathogens and herbivores.1,2 Preformed secondary compounds are often referred to as phytoanticipins and metabolites, that are synthesized de novo in response to biotic stress are known as phytoalexins.3 Camalexin is the typical phytoalexin of Arabidopsis. It has antimicrobial activity towards some pathogens and was shown to be an important component of disease resistance in several plant pathogen interactions.4 Glucosinolates (GS) are characteristic phytoanticipins of the Brassicaceae family including Arabidopsis. GS are best known as repellents or attractants for herbivorous insects and their predators whereas their antimicrobial potential has received relatively little attention.5 The GS are glucosides and the biologically active aglycone is released upon biotic stress by glucohydrolase enzymes commenly called myrosinases. Because an Arabidopsis mutant susceptible to the oomycete pathogen Phytophthora brassicae shows a partial deficiency in both camalexin and iGS accumulation we became intrigued by the role of these secondary compounds in disease resistance.6,7 Our results show that disease resistance of Arabidopsis to P. brassicae is established by the combined action of iGS and camalexin.Key words: Arabidopsis, disease resistance, Phytophthora brassicae, secondary metabolites, indolic glucosinolates, camalexin  相似文献   

13.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

14.
15.
16.
17.
18.
19.
20.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号