首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.  相似文献   

2.
Membrane transport in stomatal guard cells: The importance of voltage control   总被引:12,自引:0,他引:12  
Potassium uptake and export in the resting conditions and in response to the phytohormone abscisic acid (ABA) were examined under voltage clamp in guard cells of Vicia faba L. In 0.1 mM external K+ (with 5 mM Ca2(+)-HEPES, pH 7.4) two distinct transport states could be identified based on the distribution of the free-running membrane voltage (VM) data in conjunction with the respective I-V and G-V relations. One state was dominated by passive diffusion (mean VM = -143 +/- 4 mV), the other (mean VM = -237 +/- 10 mV) exhibited an appreciable background of primary H+ transport activity. In the presence of pump activity the free-running membrane voltage was negative of the respective K+ equilibrium potential (EK+), in 3 and 10 mM external K+. In these cases VM was also negative of the activation voltage for the inward rectifying K+ current, thus creating a strong bias for passive K+ uptake through inward-rectifying K+ channels. In contrast, when pump activity was absent VM was situated positive of EK+ and cells revealed a bias for K+ efflux. Occasionally spontaneous voltage transitions were observed during which cells switched between the two states. Rapid depolarizations were induced in cells with significant pump activity upon adding 10 microM ABA to the medium. These depolarizations activated current through outward-rectifying K+ channels which was further amplified in ABA by a rise in the ensemble channel conductance. Current-voltage characteristics recorded before and during ABA treatments revealed concerted modulations in current passage through at least four distinct transport processes, results directly comparable to one previous study (Blatt, M.R., 1990, Planta 180:445) carried out with guard cells lacking detectable primary pump activity. Comparative analyses of guard cells in each case are consistent with depolarizations resulting from the activation of an inward-going, as yet unidentified current, rather than an ABA-induced fall in H(+)-ATPase output. Also observed in a number of cells was an inward-directed current which activated in ABA over a narrow range of voltages positive of -150 mV; this and additional features of the current suggest that it may reflect the ABA-dependent activation of an anion channel previously characterized in Vicia guard cell protoplasts, but rule out its function as the primary mechanism for initial depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Guard cells rapidly adjust their plasma membrane surface area while responding to osmotically induced volume changes. Previous studies have shown that this process is associated with membrane internalization and remobilization. To investigate how guard cells maintain membrane integrity during rapid volume changes, the effects of two membrane trafficking inhibitors on the response of intact guard cells of Vicia faba to osmotic treatments were studied. Using confocal microscopy and epidermal peels, the relationship between the area of a medial paradermal guard-cell section and guard-cell volume was determined. This allowed estimates of guard-cell volume to be made from single paradermal confocal images, and therefore allowed rapid determination of volume as cells responded to osmotic treatments. Volume changes in control cells showed exponential kinetics, and it was possible to calculate an apparent value for guard-cell hydraulic conductivity from these kinetics. Wortmannin and cytochalasin D inhibited the rate of volume loss following a 0-1.5 MPa osmotic treatment. Cytochalasin D also inhibited volume increases following a change from 1.5 MPa to 0 MPa, but wortmannin had no effect. Previous studies showing that treatment with arabinanase inhibits changes in guard-cell volume in response to osmotic treatments were confirmed. However, pressure volume curves show that the effects of arabinanase and the cytochalasin D were not due to changes in cell wall elasticity. It is suggested that arabinanase, cytochalasin D, and wortmannin cause reductions in the hydraulic conductivity of the plasma membrane, possibly via gating of aquaporins. A possible role for aquaporins in co-ordinating volume changes with membrane trafficking is discussed.  相似文献   

4.
5.
Vacuoles and actin filaments are important cytoarchitectures involved in guard cell function. The changes in the morphology and number of vacuoles and the regulation of ion channel activity in tonoplast of guard cells are essential for stomatal movement. A number of studies have investigated the regulation of ion channels in animal and plant cells; however, little is known about the regulating mechanism for vacuolar dynamics in stomatal movement. Actin filaments of guard cells are remodelling with the changes in the stomatal aperture; however, the dynamic functions of actin filaments in stomatal movement remain elusive. In this paper, we summarize the recent developments in the understanding of the dynamics of actin filaments and vacuoles of guard cells during stomatal movement. All relevant studies suggest that actin filaments might be involved in stomatal movement by regulating vacuolar dynamics and the ion channels in tonoplast. The future study could be focused on the linker protein mediating the interaction between actin filaments and tonoplast, which will provide insights into the interactive function of actin and vacuole in stomatal movement regulation.  相似文献   

6.
Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S‐type) and rapid (R‐type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage‐independent anion channel component in guard cells. In contrast, the R‐type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R‐type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark‐ and CO2‐induced stomatal closure, as well as in response to the drought‐stress hormone abscisic acid. Patch‐clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R‐type currents compared with wild‐type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage‐dependent anion currents reminiscent to R‐type channels could be activated. In line with the features of the R‐type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R‐Type channels, like voltage‐dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long‐term anion and K+ efflux via SLAC1 and GORK, respectively.  相似文献   

7.
ABA-regulated promoter activity in stomatal guard cells   总被引:4,自引:0,他引:4  
CDeT6-19 is an ABA-regulated gene which has been isolated from Craterostigma plantagineum . The CDeT6-19 gene promoter has been fused to the β- glucuronidase reporter gene ( GUS ) and used to stably transform Arabidopsis thaliana and Nicotiana tabacum . This construct has been shown to be expressed in stomatal guard cells and often in the adjacent epidermal cells of both species in response to both exogenous ABA and drought stress. These results indicate that the stomatal guard cell is competent to relay an ABA signal to the nucleus. In contrast GUS expression directed by the promoter from a predominantly seed-specific, ABA-regulated gene, Em , or the promoter from the ABA-regulated CDeT27-45 gene is not detectable in the epidermal or guard cells of tobacco or Arabidopsis in response to ABA. The fact that not all ABA-regulated gene promoters are active in stomatal guard cells suggests that effective transduction of the signal is dependent upon particular regions within the gene promoter or that guard cells lack all or part of the specific transduction apparatus required to couple the ABA signal to these promoters. This suggests that there are multiple ABA stimulus response coupling pathways. The identification of a regulatory sequence from an ABA-induced gene which is expressed in stomatal guard cells creates the possibility of examining the role of Ca2+ and other second messengers in ABA-induced gene expression.  相似文献   

8.
Accumulation of malate in guard cells of Vicia faba during stomatal opening   总被引:1,自引:3,他引:1  
W. G. Allaway 《Planta》1973,110(1):63-70
Summary The level of malate in the epidermis from illuminated leaves of Vicia faba was greater than in that from dark-treated leaves. A difference in the malate level was still detected after the epidermis had been treated by rolling so that only the guard cells remained alive. The results suggest that malate may accumulate in guard cells on illumination. In subsequent experiments, stomatal apertures were measured, and potassium as well as malate was analysed in extracts of epidermis. In illuminated leaves, the potassium content of rolled epidermis increased from about 90 to about 335 picoequivalents mm-2 of epidermis whele malate increased from about zero to about 71 pmoles mm-2 and the stomata opened; in dark-treated leaves, the potassium content of rolled epidermis decreased slightly, the malate level remained about zero, and the stomata showed very slight further closure. The measured increase in potassium is likely to represent an increase in potassium concentration in the guard cells of about 0.4 Eq l-1 with stomatal opening; the increase in malate could correspond to 0.23 Eq l-1 (with respect to potassium) in the guard cells. Thus, malate accumulating in guard cells could balance about half of the potassium taken up by guard cells when stomata open in the light.  相似文献   

9.
Gao XQ  Li CG  Wei PC  Zhang XY  Chen J  Wang XC 《Plant physiology》2005,139(3):1207-1216
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that dynamic changes in the complex vacuolar membrane system play a role in the rapid changes of vacuolar volume in Vicia faba guard cells. The guard cells contained a great number of small vacuoles and various vacuolar membrane structures when stomata closed. The small vacuoles and complex membrane systems fused with each other or with the bigger vacuoles to generate large vacuoles during stomatal opening. Conversely, the large vacuoles split into smaller vacuoles and generated many complex membrane structures in the closing stomata. Vacuole fusion inhibitor, (2s,3s)-trans-epoxy-succinyl-l-leucylamido-3-methylbutane ethyl ester, inhibited stomatal opening significantly. Furthermore, an Arabidopsis (Arabidopsis thaliana) mutation of the SGR3 gene, which has a defect in vacuolar fusion, also led to retardation of stomatal opening. All these results suggest that the dynamic changes of the tonoplast are essential for enhancing stomatal movement.  相似文献   

10.
Ca2+signalling in stomatal guard cells   总被引:4,自引:0,他引:4  
Ca(2+) is a ubiquitous second messenger in the signal transduction pathway(s) by which stomatal guard cells respond to external stimuli. Increases in guard-cell cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) have been observed in response to stimuli that cause both stomatal opening and closure. In addition, several important components of Ca(2+)-based signalling pathways have been identified in guard cells, including the cADP-ribose and phospholipase C/Ins(1, 4,5)P(3)-mediated Ca(2+)-mobilizing pathways. The central role of stimulus-induced increases in [Ca(2+)](cyt) in guard-cell signal transduction has been clearly demonstrated in experiments examining the effects of modulating increases in [Ca(2+)](cyt) on alterations in guard-cell turgor or the activity of ion channels that act as effectors in the guard-cell turgor response. In addition, the paradox that Ca(2+) is involved in the transduction of signals that result in opposite end responses (stomatal opening and closure) might be accounted for by the generation of stimulus-specific Ca(2+) signatures, such that increases in [Ca(2+)](cyt) exhibit unique spatial and temporal characteristics.  相似文献   

11.
Manual evaluation of cellular structures is a popular approach in cell biological studies. However, such approaches are laborious and are prone to error, especially when large quantities of image data need to be analyzed. Here, we introduce an image analysis framework that overcomes these limitations by semi-automatic quantification and clustering of cytoskeletal structures. In our framework, cytoskeletal orientation, bundling and density are quantified by measurement of newly-developed, robust metric parameters from microscopic images. Thereafter, the microscopic images are classified without supervision by clustering based on the metric patterns. Clustering allows us to collectively investigate the large number of cytoskeletal structure images without laborious inspection. Application of this framework to images of GFP-actin binding domain 2 (GFP-ABD2)-labeled actin cytoskeletons in Arabidopsis guard cells determined that microfilaments (MFs) are radially oriented and transiently bundled in the process of diurnal stomatal opening. The framework also revealed that the expression of mouse talin GFP-ABD (GFP-mTn) continuously induced MF bundling and suppressed the diurnal patterns of stomatal opening, suggesting that changes in the level of MF bundling are crucial for promoting stomatal opening. These results clearly demonstrate the utility of our image analysis framework.  相似文献   

12.
To clarify the pathway and role of malate synthesis in guard cells, epidermal strips isolated from Vicia faba L. leaflets were treated with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP), a specific inhibitor of phosphoenolpyruvate carboxylase (PEPC). When dark-closed stomata were illuminated, malate accumulated in guard cells and stomata opened; these were inhibited by 60% and 30%, respectively, by 5 mM DCDP treatment. When light-opened stomata were treated with DCDP, both malate level in guard cells and stomatal aperture decreased. Treatment with 5 mM DCDP partially inhibited CO2 incorporation into malate in guard cells. Treatment with mannitol at 0.4 M (osmotic stress) in the light increased malate level in guard cells and closed stomata. DCDP treatment decreased both malate level and stomatal aperture under stressed condition. These results show that malate synthesis in the light under both non-stressed and stressed conditions is dependent on PEPC activity. The extent of the decrease in malate level by DCDP treatment was larger under stressed condition than under nonstressed condition, suggesting that osmotic stress may enhance the activity of this pathway of malate synthesis which is induced by light. Role of malate synthesis in guard cells is discussed.  相似文献   

13.
14.
15.
The energy required for ion uptake in guard cells is provided by two important bioenergetic processes, namely respiration and photosynthesis. The blue light-sensitive plasma membrane redox system is considered as the third bioenergetic phenomenon, since it uses blue light to create a proton gradient across the membrane. The unique features of respiration and photosynthesis in guard cells and their role in stomatal function are emphasized. Evidence for and against the blue light-sensitive components on plasma membrane (ATPase/distinct redox chain) and the photoreceptors (flavins, carotenoids, pterins) in guard cells are presented. The information on ion channels and their response to various kinds of secondary messengers including G-proteins, phosphoinositides, diacylglycerol, calcium, cAMP and protein kinases are reviewed. A model is presented indicating the possible mechanism of perception and transduction by guard cells of external signals and their interaction with different bioenergetic components.  相似文献   

16.
Dittrich  P.  Mayer  M. 《Planta》1978,139(2):167-170
The uptake of glucose and other carbohydrates into the guard cells of Commelina communis L. was found to inhibit the opening of the stomata. The concentration of glucose necessary to achieve about 50% inhibition was of the same order of magnitude as the potassium concentration required for opening; the uptake systems for potassium and glucose appear to be competitive and to exhibit the same degree of affinity. It is suggested that the uptake of glucose occurs via a proton cotransport, which, depolarizing the membrane potential, slows down the electrogenic import of potassium ions. The process of stomatal closure, in contrast, appears not to be affected by carbohydrate uptake. In guard cells of Tulipa gesneriana L. and Vicia faba L., which do not possess subsidiary cells, import of glucose or other carbohydrates did not interfere with the regulation of stomatal movements.  相似文献   

17.
Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.  相似文献   

18.
We recently established an immunohistochemical method for the detection of blue light (BL)-induced and phototropin-mediated phosphorylation of plasma-membrane H+-ATPase in stomatal guard cells of Arabidopsis thaliana. This technique makes it possible to detect the phosphorylation/activation status of guard-cell H+-ATPase in the epidermis of a single rosette leaf, without the need to prepare guard-cell protoplasts (GCPs) from a large number of plants. Moreover, it can detect guard-cell responses under more natural and stress-free conditions compared to using GCPs. Taking advantage of these properties, we examined the effect of abscisic acid (ABA) on BL-induced phosphorylation of guard-cell H+-ATPase by using ABA-insensitive mutants. This revealed inhibition of BL-induced phosphorylation of guard-cell H+-ATPase via the early ABA-signaling components PYR/PYL/RCAR-PP2Cs-SnRK2s, which are known to be early ABA-signaling components for a wide range of ABA responses in plants.   相似文献   

19.
We employed a gene trap approach to identify genes expressed in stomatal guard cells of Arabidopsis thaliana . We examined patterns of reporter gene expression in approximately 20 000 gene trap lines, and recovered five lines with exclusive or preferential expression in stomata. The screen yielded two insertions in annotated genes, encoding the CYTOCHROME P450 86A2 (CYP86A2) mono-oxygenase, and the PLEIOTROPIC DRUG RESISTANCE 3 (AtPDR3) transporter. Expression of the trapped genes in guard cells was confirmed by RT-PCR experiments in purified stomata. Examination of homozygous mutant lines revealed that abscisic acid (ABA)-induced stomatal closure was impaired in the atpdr3 mutant. In three lines, insertions occurred outside transcribed units. Expression analysis of the genes surrounding the trapping inserts identified two genes selectively expressed in guard cells, corresponding to a PP2C PROTEIN PHOSPHATASE and an unknown expressed protein gene. Statistical analyses of the chromosomal regions tagged by the gene trap insertions revealed an over-represented [A/T]AAAG motif, previously described as an essential cis -active element for gene expression in stomata. The lines described in this work identify novel genes involved in the modulation of stomatal activity, provide useful markers for the study of developmental pathways in guard cells, and are a valuable source of guard cell-specific promoters.  相似文献   

20.
Zhang X  Dong FC  Gao JF  Song CP 《Cell research》2001,11(1):37-43
INTRODUCTIONEven under optimal conditions, many metabolicprocesses, including chloroplastic, mitochondrial,and plasma membrane-linked electron transportsystems, produce reactive oxygen species (ROS)such as the superoxide radical (OZ--), hydrogenperoxide (HZOZ), and the hydroxyl free radical(OH--)[1, 2]. Furthermore, the imposition of bioticand abiotic stress conditions can give rise to ex-cess concentrations of ROS, resulting in oxidativedamage at the cellular level. Interestingly, R…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号