首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor, and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of beta-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility, and cell survival.  相似文献   

2.
The NG2 chondroitin sulfate proteoglycan is a valuable marker for several types of incompletely-differentiated precursor cells, including oligodendrocyte progenitors in the central nervous system, developing mesenchymal cells in cartilage, muscle, and bone, and pericytes/smooth muscle cells in developing vasculature. In addition to extending our knowledge about the developmental roles of these cell types, current studies on NG2 are also providing information about the molecular mechanisms through which the proteoglycan itself influences progenitor development. This research suggests that interaction of NG2 with extracellular and intracellular ligands regulates signaling events that are important for both cell proliferation and cell migration.  相似文献   

3.
Glioma invasion into the CNS involves the interaction of tumor cells with the host’s cells and extracellular matrix (ECM) molecules. In this study, the expression of ECM-associated and cell-associated proteins such as the transmembrane CD44 adhesion molecule and neuro-glial proteoglycan 2 (NG2), a member of the chondroitin sulfate proteoglycan family, were evaluated during glioma progression, in vitro and in vivo, using a model of a highly invasive and aggressive intracerebral mouse G-26 glioma. We found a marked increase in CD44 and NG2 expression in brain tissue containing glioma. The glioma levels of these proteins gradually increased over time to reach 3–15 times the levels in the contralateral control. NG2 and CD44 expression paralleled progression of the glioma, being higher on days 14 and 21 than on day 2 post-glioma implant. In addition, when invading glioma crossed the midline in the advanced tumor stage, levels of each of these proteins in the contralateral tissue were elevated, but were still significantly lower than in the ipsilateral, tumor-bearing hemisphere. Immunohistochemistry of advanced stage G-26 glioma (day 21) showed CD44 expression to be most prominent at the front of the glioma invasion line, sharply separated from normal brain parenchyma which expressed glial fibrillary acidic protein (GFAP). However, single CD44 positive cells that escaped the tumor mass penetrated between the astrocytes that encased the tumor at its periphery. In contrast, NG2 was expressed on nearly all glioma cells within the tumor mass but less so at the leading edge of the tumor. The NG2 positive cells were clearly demarcated and morphologically distinguishable from GFAP positive cells and only sporadic, small groups of NG2 positive cells were seen in the GFAP positive zone of the neuropil. Taken together, these data show that during glioma progression in the brain, the level and pattern of glioma-associated molecules such as CD44 and NG2 may aid in tracing and targeting the invading glioma cells.  相似文献   

4.
Secreted peptide growth factors are critical extracellular signals that interact to promote the proliferation, differentiation, and survival of progenitor cells in developing tissues. IGF-I signaling through the IGF type I receptor provides a mitogenic signal for numerous cell types, including stem and progenitor cells. We have utilized the O-2A oligodendrocyte progenitor to study the mechanism of IGF-I mitogenic actions since these progenitors respond to IGF-I in vitro, and gene targeting studies in mice have demonstrated that IGF-I is essential for normal oligodendrocyte development in vivo. The goal of this study was to elucidate the mechanism by which IGF-I promotes the proliferation of oligodendrocyte progenitors in the context of other mitogens critical for their proliferation. Results presented here show that IGF-I significantly amplified the actions of FGF-2 and PDGF to promote DNA synthesis in O-2A progenitors. Investigation of cell cycle kinetics revealed that IGF-I had no significant effect on the rate of cell cycle progression. Instead, IGF-I promoted increased recruitment of O-2A progenitors into the S phase of the cell cycle. These studies support a role for IGF-I as a cell cycle progression factor for progenitor cells.  相似文献   

5.
Cells that express the NG2 proteoglycan (NG2+ cells) comprise a unique population of glial cells in the central nervous system. While there is no question that some NG2+ cells differentiate into oligodendrocytes during development, the persistence of numerous NG2+ cells in the mature CNS has raised questions about their identity, relation to other CNS cell types, and functions besides their progenitor role. NG2+ cells also express the alpha receptor for platelet-derived growth factor (PDGF αR), a receptor that mediates oligodendrocyte progenitor proliferation during development. Antigenically, NG2+ cells are distinct from fibrous and protoplasmic astrocytes, resting microglia, and mature oligodendrocytes. Therefore, we propose the term polydendrocytesto refer to all NG2-expressing glial cells in the CNS parenchyma. This distinguishes them from the classical glial cell types and identifies them as the fourth major glial population in the CNS. Recent observations suggest that polydendrocytes are complex cells that physically and functionally interact with other cell types in the CNS. Committed oligodendrocyte progenitor cells arise from restricted foci in the ventral ventricular zone in both spinal cord and brain. It remains to be clarified whether there are multiple sources of oligodendrocytes, and if so whether polydendrocytes (NG2+ cells) represent progenitor cells of all oligodendrocyte lineages. Proliferation of NG2+ cells during early development appears to be dependent on PDGF, but the regulatory mechanisms that govern NG2+ cell proliferation in the mature CNS remain unknown. Pulse-chase labeling with bromodeoxyuridine indicates that polydendrocytes that proliferate in the postnatal spinal cord differentiate into oligodendrocytes. Novel experimental approaches are being developed to further elucidate the functional properties and differentiation potential of polydendrocytes.  相似文献   

6.
Neuron glia antigen-2 ((NG2), also known as chondroitin sulphate proteoglycan 4, or melanoma-associated chondroitin sulfate proteoglycan) is a type-1 membrane protein expressed by many central nervous system (CNS) cells during development and differentiation and plays a critical role in proliferation and angiogenesis. ‘NG2’ often references either the protein itself or the highly proliferative and undifferentiated glial cells expressing high levels of NG2 protein. NG2 glia represent the fourth major type of neuroglia in the mammalian nervous system and are classified as oligodendrocyte progenitor cells by virtue of their committed oligodendrocyte generation in developing and adult brain. Here, we discuss NG2 glial cells as well as NG2 protein and its expression and role with regards to CNS neoplasms as well as its potential as a therapeutic target for treating childhood CNS cancers.  相似文献   

7.
The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC) and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.  相似文献   

8.
9.
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated during development through the proliferation and differentiation of a distinct progenitor population. Not all oligodendrocyte progenitors generated during development differentiate, however, and large numbers of oligodendrocyte progenitors are present in the adult CNS, particularly in white matter. These "adult progenitors" can be identified through expression of the NG2 proteoglycan. Adult oligodendrocyte progenitors are thought to develop from the original pool of progenitors and in vitro are capable of differentiating into oligodendrocytes. Why these cells fail to differentiate in the intact CNS is currently unclear. Here we show that contact with CNS myelin inhibits the maturation of immature oligodendrocyte progenitors. The inhibition of oligodendrocyte progenitor maturation is a characteristic of CNS myelin that is not shared by several other membrane preparations including adult and neonatal neural membrane fractions, PNS myelin, or liver. This inhibition is concentration dependent, is reversible, and appears not to be mediated by either myelin basic protein or basic fibroblast growth factor. Myelin-induced inhibition of oligodendrocyte progenitor maturation provides a mechanism to explain the generation of a residual pool of immature oligodendrocyte progenitors in the mature CNS.  相似文献   

10.
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.  相似文献   

11.
NG2细胞是广泛分布于CNS中表达NG2蛋白多糖的一种胶质细胞,也被称为少突胶质前体细胞(oligodendrocyteprecur—sorcells,oPc)。该细胞具有典型复杂的星形形态和长突起围绕于胞体周围,表达电压门控的K+和Na+通道、GABAA以及AMPA/红藻氨酸受体并接受神经元突触的信号输入。NG2细胞增殖分化是保证神经元轴突髓鞘化的首要前提,NG2的增殖分化不能仅依靠其自身调控,NG2-神经元突触联系可能也是调控NG2细胞增殖分化的信息中转站。伴随NG2细胞增殖分化神经元轴突的髓鞘化也不断形成,这些过程在围生期表现尤为明显;NG2细胞分化为少突胶质细胞后,其功能上具有”专一性”,所以可能存在NG2.神经元突触联系的作用被削弱的现象。因此,在NG2细胞增殖过程中,NG2细胞保持与神经元之间的功能性突触并将其传递给子代NG2细胞;而在NG2细胞分化的过程中,NG2细胞的突触信号输入迅速减少。NG2细胞不但是一种前体细胞,同时也是一种具有独特功能的胶质细胞,在中枢神经系统中发挥重要作用。本综述就NG2细胞在增殖分化过程中其突触信号的变化以及可能的意义进行阐述。  相似文献   

12.
Two distinct Thr phosphorylation events within the cytoplasmic domain of the NG2 proteoglycan help regulate the cellular balance between proliferation and motility. Protein kinase Calpha mediates the phosphorylation of NG2 at Thr2256, resulting in enhanced cell motility. Extracellular signal-regulated kinase phosphorylates NG2 at Thr2314, stimulating cell proliferation. The effects of NG2 phosphorylation on proliferation and motility are dependent on beta1-integrin activation. Differential cell surface localization of the two distinctly phosphorylated forms of NG2 may be the mechanism by which the NG2-beta1-integrin interaction promotes proliferation in one case and motility in the other. NG2 phosphorylated at Thr2314 colocalizes with beta1-integrin on microprotrusions from the apical cell surface. In contrast, NG2 phosphorylated at Thr2256 colocalizes with beta1-integrin on lamellipodia at the leading edges of cells. Thus, phosphorylation and the resulting site of NG2-integrin localization may determine the specific downstream effects of integrin signaling.  相似文献   

13.
14.
The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors.  相似文献   

15.
The NG2 proteoglycan is believed to be an in vivomarker for oligodendrocyte progenitors found in the developing brain. The prevalence of NG2-expressing cells that remain in the adult CNS following the end of gliogenesis is significant. Current research is focused on how this cell participates in the normal function of the adult CNS and whether it may be activated by injury and/or contribute to repair. Despite substantial evidence for a sub-population of NG2-expressing cells playing a glial progenitor role in the adult CNS, there is much to be learned. Specifically, the heterogeneity of this population has not been adequately addressed for the adult CNS and while NG2 cells continue to divide in the adult CNS it is not clear what function they serve once myelination is complete. Future studies should elucidate the functional importance of NG2 in a variety of cell functions and shed light on the role NG2-expressing cells play in the intact and diseasedCNS.  相似文献   

16.
As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.  相似文献   

17.
Ju PJ  Liu R  Yang HJ  Xia YY  Feng ZW 《Cytotherapy》2012,14(5):608-620
Background aimsThe widespread NG2-expressing neural progenitors in the central nervous system (CNS) are considered to be multifunctional cells with lineage plasticity, thereby possessing the potential for treating CNS diseases. Their lineages and functional characteristics have not been completely unraveled. The present study aimed to disclose the lineage potential of clonal NG2+ populations in vitro and in vivo.MethodsTwenty-four clones from embryonic cerebral cortex-derived NG2+ cells were induced for oligodendrocyte, astrocyte, neuronal and chondrocyte differentiation. The expression profiles of neural progenitor markers chondroitin sulfate proteoglycan 4 (NG2), platelet-derived growth factor-α receptor (PDGFαR); nestin and neuronal cell surface antigen (A2B5) were subsequently sorted on cells with distinct differentiation capacity. Transplantation of these NG2+ clones into the spinal cord was used to examine their lineage potential in vivo.ResultsIn vitro differentiation analysis revealed that all the clones could differentiate into oligodendrocytes, and seven of them were bipotent (oligodendrocytes and astrocytes). Amazingly, one clone exhibited a multipotent capacity of differentiating into not only neuronal–glial lineages but also chondrocytes. These distinct subtypes were further found to exhibit phenotypic heterogeneity based on the examination of a spectrum of neural progenitor markers. Transplanted clones survived, migrated extensively and differentiated into oligodendrocytes, astrocytes or even neurons to integrate with the host spinal cord environmentConclusionsThese results suggest that NG2+ cells contain heterogeneous progenitors with distinct differentiation capacities, and the immortalized clonal NG2+ cell lines might provide a cell source for treating spinal cord disorders.  相似文献   

18.
Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques.  相似文献   

19.
High-grade gliomas, such as glioblastomas (GBMs), are very aggressive, invasive brain tumors with low patient survival rates. The recent identification of distinct glioma tumor subtypes offers the potential for understanding disease pathogenesis, responses to treatment and identification of molecular targets for personalized cancer therapies. However, the key alterations that drive tumorigenesis within each subtype are still poorly understood. Although aberrant NF-κB activity has been implicated in glioma, the roles of specific members of this protein family in tumorigenesis and pathogenesis have not been elucidated. In this study, we show that the NF-κB protein RelB is expressed in a particularly aggressive mesenchymal subtype of glioma, and loss of RelB significantly attenuated glioma cell survival, motility and invasion. We find that RelB promotes the expression of mesenchymal genes including YKL-40, a marker of the MES glioma subtype. Additionally, RelB regulates expression of Olig2, a regulator of cancer stem cell proliferation and a candidate marker for the cell of origin in glioma. Furthermore, loss of RelB in glioma cells significantly diminished tumor growth in orthotopic mouse xenografts. The relevance of our studies for human disease was confirmed by analysis of a human GBM genome database, which revealed that high RelB expression strongly correlates with rapid tumor progression and poor patient survival rates. Thus, our findings demonstrate that RelB is an oncogenic driver of mesenchymal glioma tumor growth and invasion, highlighting the therapeutic potential of inhibiting the noncanonical NF-κB (RelB-mediated) pathway to treat these deadly tumors.  相似文献   

20.
The human homologue of NG2, the human melanoma proteoglycan (HMP), is expressed on most human melanomas. To investigate the role of this proteoglycan in melanoma progression, we have attempted to identify functionally important molecular ligands for NG2. Immunohistochemical analysis of cell lines that endogenously express NG2/HMP suggests that NG2/HMP associates with CD44 and α4β1 integrin, two molecules previously implicated in melanoma progression. Transfection of rat NG2 into the NG2-negative B16 mouse melanoma cell line also resulted in a highly colocalized pattern of expression between the transfected rat NG2 and the endogenously expressed mouse CD44 and α4β1 integrin molecules. In functional assays, expression of NG2 decreased the adhesion of B16 melanoma cells to CD44 monoclonal antibodies, hyaluronic acid, the C-terminal 40-kDa fibronectin fragment, and the CS1 fibronectin peptide, suggesting that NG2 may negatively modulate CD44- and α4β1-mediated binding events. Expression of NG2 increased the proliferation of melanoma cells in culture and increased tumorigenicity in vivo. Moreover, NG2 expression led to increased lung metastasis of B16F1 and B16F10 melanoma cells in experimental metastasis studies. Together, these studies demonstrate that NG2 is capable of modulating the adhesion, proliferation, and metastatic potential of melanoma cells. J. Cell. Physiol. 177:299–312, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号