首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin, a pineal hormone in mammals, is found in a wide range of plant species at detection levels from a few nanograms to a few milligrams, and has been implicated in several physiological roles, such as flowering, morphogenesis and adaptation to environmental changes. Serotonin synthesis requires two enzymes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), with TDC serving as a rate-limiting step because of its high Km relation to the substrate tryptophan (690 µM) and its undetectable expression level in control plants. However, T5H and downstream enzymes, such as serotonin N-hydroxycinnamoyl transferase (SHT), have low Km values with corresponding substrates. This suggests that the biosynthesis of serotonin or serotonin-derived secondary metabolites is restricted to cellular stages when high tryptophan levels are present.Key words: feruloylserotonin, serotonin, tryptamine, tryptamine 5-hydroxylase, tryptophan, tryptophan biosynthesis, tryptophan decarboxylaseSerotonin is found in a broad range of plants and is abundant in reproductive organs, such as fruits and seeds.13 Even though many physiological roles for serotonin in plants have been proposed,27 its actual roles have yet to be examined in detail using molecular, biochemical and genetic approaches. In plants, serotonin is synthesized by two enzymes: tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H). TDC decarboxylates tryptophan into tryptamine, after which T5H hydroxylates tryptamine into serotonin.810 TDC expresses at an undetectable level in rice leaves, whereas T5H expresses constitutively.11,12  相似文献   

2.
Rice (Oryza sativa cv. Dongjin) plants responded to treatment with methanol by inducing the synthesis of secondary metabolites such as serotonin derivatives, which include feruloylserotonin and 4-coumaroylserotonin. This response was not only a dose dependence on methanol showing a maximum effect with 1% methanol concentration, but also methanol specific. No other solvents such as ethanol, atetaldehyde, isopropanol, formaldehyde and formic acid showed the induced synthesis of serotonin derivatives as methanol did. The methanol induced synthesis of serotonin derivatives was completely blocked by the addition of abscisic acid (ABA), and significantly inhibited by the additions of zeatin and indoleacetic acid (IAA). However, gibberellic acid (GA) had little effect on the action of methanol. Finally, the induced synthesis of serotonin derivatives upon methanol treatment was closely associated with the transient increase in the activity of key enzyme of serotonin N-hydroxycinnamoyl transferase (SHT) which catalyzes the condensation of serotonin and phenolic-CoA into serotonin derivatives.Key words: elicitor, methanol, 4-coumaroylserotonin, feruloylserotonin, serotonin N-hydroxycinnamoyl transferase, rice seedlingsElicitor broadly refers to molecules and stimuli that either induce or control gene expression and metabolism.1 To date, a series of elicitors have been reported and include various cell wall constituents of plant and microbe origins, avirulence gene products from microbes, and a lots of chemical and physical stimuli such as CuSO4, CuCl2, ozone and UV light.2 Among chemical elicitors, CuSO4 is well known to elicit the accumulation of sesquiterpene lubimin in fruit cavities of Datura stramonium.3 Aluminum chloride (AlCl3) induces resveratrol synthesis in grapevine leaves.4 It is also reported that Arabidopsis induces camalexin synthesis in response to α-aminobutyric acid.5 Recently, it was found that rice leaves upon senescence produced methanol which then triggered the synthesis of tryptophan and serotonin, suggestive of a key role of methanol as an endogenous elicitor for both primary and secondary metabolites.6 Here, we further examined the role of methanol in rice leaves as an elicitor on the biosynthesis of serotonin derivatives such as 4-coumaroylserotonin (CS) and feruloylserotonin (FS) which show antifungal activity as well as antioxidant activity.7,8  相似文献   

3.
The chemical cross talk between rice and barnyardgrass which is one of the most noxious weeds in rice cultivation was investigated. Allelopathic activity of rice was increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. Rice allelochemical, momilactone B, concentration in rice seedlings and momilactone B secretion level from rice were also increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. As momilactone B possesses strong growth inhibitory activity and acts as an allelochemical, barnyardgrass-induced rice allelopathy may be due to the increased momilactone B secretion. These results suggest that rice may respond to the presence of neighboring barnyardgrass by sensing the chemical components in barnyardgrass root exudates and increase allelopathic activity by elevated production and secretion levels of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyardgrass and the induced-allelopathy may provide a competitive advantage for rice through suppression of the growth of barnyardgrass.Key words: allelopathy, Echinochloa, chemical interaction, induced-allelopathy, momilactone, Oryza sativaThe chemical cross talk between host and symbiotic or parasitic plants is an essential process for the development of physical connections in symbiosis and parasitism.13 Barnyardgrass is one of the most common and noxious weeds in rice paddy fields.4 Although barnyardgrass is adapted rice production system due to its similarity in growth habit, the reason why barnyardgrass so often invades into the rice paddy fields is unknown. There might be some special interactions between both plant species.Plants are able to accumulate phytoalexins around infection sites of pathogens soon after sensing elicitors of pathogen origin. This accumulation of phytoalexins can protect the plants from further pathogen infection.5,6 Plants are also able to activate defense mechanisms against attacking herbivores by sensing volatile compounds, such as methacrolein and methyl jasmonate, released by herbivore-attacked plant cells. The volatile-sensed plants increase the production of phenolics, alkaloids, terpenes and defense proteins, which reduce herbivory attacks.7,8 Therefore, plants are able to elevate the defense mechanisms against several biotic stress conditions by detection of various compounds.Allelopathy is the direct influence of organic chemicals released from plants on the growth and development of other plants.911 Allelochemicals are such organic chemicals involved in the allelopathy.12,13 Allelochemicals can provide a competitive advantage for host-plants through suppression of soil microorganism and inhibition of the growth of competing plant species because of their antibacterial, antifungal and growth inhibitory activities.3,14,15Rice has been extensively studied with respect to its allelopathy as part of a strategy for sustainable weed management, such as breeding allelopathic rice strains. A large number of rice varieties were found to inhibit the growth of several plant species when these rice varieties were grown together with these plants under the field or/and laboratory conditions.1620 These findings suggest that rice may produce and release allelochemicals into the neighboring environments and may inhibit the growth of the neighboring plants by the allelochemicals.Potent allelochemical, momilactone B, was isolated from rice root exudates.21 Momilactone B inhibits the growth of typical rice weeds like barnyardgrass and Echinochloa colonum at concentrations greater than 1 µM and the toxicity of momilactone B to rice itself was very low.22 In addition, rice plants secrete momilactone B from the roots into the rhizosphere over their entire life cycle.22 The observations suggest rice allelopathy may be primarily dependant on the secretion levels of momilactone B from the rice seedlings.22,23Allelopathic activity of rice exhibited 5.3- to 6.3-fold increases when rice and barnyardgrass seedlings were grown together. Root exudates of barnyardgrass seedlings also increased allelopathic activity and momilactone B concentration in rice seedlings. The increasing the exudate concentration increased the allelopathic activity and momilactone B concentration in rice.24 Thus, the chemical components in barnyardgrass root exudates may affect gene expressions involved in momilactone B biosynthesis. However, effects of the barnyardgrass root exudates on the secretion level of mimilactone B from rice has not yet reported.Rice seedlings were incubated in the medium containing barnyardgrass root exudates for 10 d, and secretion level of momilactone B by rice was determined (Fig. 1). The root exudates increased the secretion level significantly at concentrations greater than 30 mg/L of barnyardgrass root exudates, and increasing the concentration increased the secretion level. At concentrations of 300 mg/L of the root exudates, the secretion level was 10-fold greater than that in control (0 mg of root exudate). There was no significant difference in the osmotic potential between the medium contained barnyardgrass root exudates and control medium (all about 10 mmol/kg), and pH value of the medium was maintained at 6.0 throughout the experiments.25 These results suggest that unknown chemical components in the barnyardgrass root exudates may induce the secretion of momilactone B from rice. As momilactone B possesses strong phytotoxic and allelopathic activities,2123,25 the elevated production and secretion of momilactone B in rice may provide a competitive advantage for root establishment through local suppression of pathogens and inhibition of the growth of competing plant species including barnyardgrass. Thus, barnyardgrass-induced rice allelopathy may be caused by the chemical components in the barnyardgrass root exudates.Open in a separate windowFigure 1Effects of barnyardgrass root exudates on momilactone B secretion level in rice. Rice seedlings were incubated in the medium containing barnyardgrass root exudates for 10 d, and secretion level of momilactone B was determined as described by Kato-Noguchi.24 The experiment was repeated six times with three assays for each determination. Different letters show significant difference (p < 0.01) according to Tukey''s HSD test.Although mechanisms of the exudation are not well understood, it is suggested that plants are able to secrete a wide variety of compounds from root cells by plasmalemma-derived exudation, endoplasmic-derived exudation and proton-pumping mechanisms.3,15 Through the root exudation of compounds, plants are able to regulate the soil microbial community in their immediate vicinity, change the chemical and physical properties of the soil, and inhibit the growth of competing plant species.3,14,15 The present research suggests that rice may be aware of the presence of neighboring barnyardgrass by detection of certain key in barnyardgrass root exudates, and this sensorial function may trigger a signal cascade resulting in increasing rice allelopathy through increasing production of momilactone B and secretion of momilactone B into the rhizosphere. Therefore, rice allelopathy may potentially be an inducible defense mechanism by chemical-mediated plant interactions between rice and barnyardgrass.  相似文献   

4.
Cytosolic free Ca2+ mobilization induced by microbe/pathogen-asssociated molecular patterns (MAMPs/PAMPs) plays key roles in plant innate immunity. However, components involved in Ca2+ signaling pathways still remain to be identified and possible involvement of the CBL (calcineurin B-like proteins)-CIPK (CBL-interacting protein kinases) system in biotic defense signaling have yet to be clarified. Recently we identified two CIPKs, OsCIPK14 and OsCIPK15, which are rapidly induced by MAMPs, involved in various MAMP-induced immune responses including defense-related gene expression, phytoalexin biosynthesis and hypersensitive cell death. MAMP-induced production of reactive oxygen species as well as cell browning were also suppressed in OsCIPK14/15-RNAi transgenic cell lines. Possible molecular mechanisms and physiological functions of the CIPKs in plant innate immunity are discussed.Key words: PAMPs/MAMPs, calcium signaling, CBL-CIPK, hypersensitive cell death, reactive oxygen speciesCa2+ plays an essential role as an intracellular second messenger in plants as well as in animals. Several families of Ca2+ sensor proteins have been identified in higher plants, which decode spatiotemporal patterns of intracellular Ca2+ concentration.1,2 Calcineurin B-Like Proteins (CBLs) comprise a family of Ca2+ sensor proteins similar to both the regulatory β-subunit of calcineurin and neuronal Ca2+ sensors of animals.3,4 Unlike calcineurin B that regulates protein phosphatases, CBLs specifically target a family of protein kinases referred to as CIPKs (CBL-Interacting Protein Kinases).5 The CBL-CIPK system has been shown to be involved in a wide range of signaling pathways, including abiotic stress responses such as drought and salt, plant hormone responses and K+ channel regulation.6,7Following the recognition of pathogenic signals, plant cells initiate the activation of a widespread signal transduction network that trigger inducible defense responses, including the production of reactive oxygen species (ROS), biosynthesis of phytoalexins, expression of pathogenesis-related (PR) genes and reorganization of cytoskeletons and the vacuole,8 followed by a form of programmed cell death known as hypersensitive response (HR).9,10 Because complexed spatiotemporal patterns of cytosolic free Ca2+ concentration ([Ca2+]cyt) have been suggested to play pivotal roles in defense signaling,1,9 multiple Ca2+ sensor proteins and their effectors should function in defense signaling pathways. Although possible involvement of some calmodulin isoforms1113 and the calmodulin-domain/calcium-dependent protein kinases (CDPKs)1419 has been suggested, other Ca2+-regulated signaling components still remain to be identified. No CBLs or CIPKs had so far been implicated as signaling components in innate immunity.  相似文献   

5.
The ACh-mediated system consisting of acetylcholine (ACh), acetylcholine receptor (AChR) and acetylcholinesterase (AChE) is fundamental for nervous system function in animals and insects. Although plants lack a nervous system, both ACh and ACh-hydrolyzing activity have been widely recognized in the plant kingdom. The function of the plant ACh-mediated system is still unclear, despite more than 30 years of research. To understand ACh-mediated systems in plants, we previously purified maize AChE and cloned the corresponding gene from maize seedlings (Plant Physiology). In a recent paper in Planta, we also purified and cloned AChE from the legume plant siratro (Macroptilium atropurpureum). In comparison with electric eel AChE, both plant AChEs showed enzymatic properties of both animal AChE and animal butyrylcholinesterase. On the other hand, based on Pfam protein family analysis, both plant AChEs contain a consensus sequence of the lipase GDSL family, while the animal AChEs possess a distinct alpha/beta-hydrolase fold superfamily sequence, but no lipase GDSL sequence. Thus, neither plant AChE belongs to the well-known AChE family, which is distributed throughout the animal kingdom. To address the possible physiological roles of plant AChEs, we herein report our data from the immunological analysis of the overexpressed maize AChE gene in plants.Key words: acetylcholinesterase activity, maize AChE gene, overexpression, rice, subcellular localizationIn the animal ACh-mediated system, ACh serves to propagate an electrical stimulus across the synaptic junction. At the presynaptic neuron end, an electrical impulse triggers the release of ACh, which accumulates in vesicles into the synaptic cleft via exocytosis. ACh then binds to an ACh receptor (AChR) on the postsynaptic neuron surface, and the ACh-AChR binding induces subsequent impulses to the postsynaptic neuron. Finally, ACh, which is released again by the receptor into the synaptic cleft, is rapidly degraded by acetylcholinesterase (AChE; E.C.3.1.1.7).1,2 ACh and AChE,3,4,5 and choline acetyltransferase activity that takes part during synthesis of ACh6,7 have been recognized in plants. AChR has not been identified in plant cells so far. However, so-called “ACh-binding sites” were detected in membrane fractions from some bean seedlings8,9 and evidence was also detected in plant organelles, such as chloroplasts10 and tonoplasts11 using pharmacological methods.Concerning the function of the ACh-mediated system in plants, Momonoki12,13 has proposed that it results in an asymmetric distribution of hormones and substances due to gravity stimuli, as well as changes in ACh content, AChE activity and Ca2+ level in response to heat stress. However, all these phenomena have been investigated using indirect techniques. Thus, to understand the plant ACh-mediated system, we purified AChEs and cloned the AChE genes from maize14 and siratro15 seedlings. The maize AChE was found to exist as two types of 88-kDa homodimers, which in turn consisted of disulfide-linked and noncovalently-linked 42- to 44-kDa subunits.14 The siratro AChE might exist as a disulfide-linked 125-kDa homotrimer consisting of 41- or 42-kDa subunits.15 The plant AChEs apparently from various quaternary structures, depending on the plant species, similar to animal AChEs. Furthermore, maize and siratro AChEs showed enzymatic properties of both animal AChE and animal butyrylcholinesterase, compared with electric eel AChE.15In this addendum, we report our recent immunohistochemical study using an antibody against maize AChE. In order to overexpress the maize AChE gene in rice plants, we constructed a plasmid for the sense expression of the AChE gene by cloning it into the pT7 Blue vector. The maize AChE gene14 was introduced behind the maize ubiquitin 1 promoter (Ubi) in the p2K-1+ plant expression vector. The Ubi::maize AChE and control (p2K-1+ only) plasmid were introduced into Agrobacterium tumefaciens EHA 101, which was transformed into rice (Nihonbare) via Agrobacterium-mediated transformation methods.16 The maize AChE transgenic plants exhibited approximately 650-fold higher AChE activity than was observed in the control plants but no phenotypic changes between transgenic and control plants. The subcellular localization of AChE was observed by immunofluorescence in paraffin-embedded leaf and stem tissues of transgenic rice plants. The maize AChE protein was detected in extracellular spaces in the leaf and stem of the plants (Fig. 1). Therefore, plant AChEs may function in the extracellular space, similar to some isoforms of animal AChE.2,17Open in a separate windowFigure 1Subcellular localization of maize AChE in leaf and stem of transgenic rice. (A) Leaf cross-section of transgenic rice; (B) leaf cross-section of control; (C) stem cross-section of transgenic rice; (D) stem cross-section of control. Each section was probed with maize AChE antibody and then visualized with Alexa Fluor 488-conjugated secondary antibody. Control indicates rice plants transfected with p2K-1+ vector only. Arrowheads indicate localization of maize AChE.Most of the AChE activity in the root was associated with cell wall materials.18 The computer-assisted cellular sorting prediction program TargetP presumed that our purified maize AChE14 is targeted to the secretory pathway via the endoplasmic reticulum. Furthermore, the SOSUI program (http://sosui.proteome.bio.tuat.ac.jp / sosuiframe0.html), which discriminates between membrane and soluble proteins, showed that the maize AChE does not contain any likely transmembrane helical regions, which are features of proteins that associate with the lipid bilayers of the cell membrane. These findings suggested that the maize AChE might be localized at the cell wall. However, in an earlier work,13 we speculated that AChE is localized at the plasmodesmatal cell-to-cell interface and that it plays a role in regulation of the plasmodesmatal channel as a constituent of the ACh-mediated system. We improved our hypothesis of the role of the ACh-mediated system in a paper in Plant Physiol.14The results based on fluorescence-immunohistochemistry in transgenic rice plants reported in this paper confirmed that the maize AChE is localized at the cell wall. Here we propose again our hypothesis of an ACh-mediated system including this new finding; the system might be localized to the extracellular region around the plasmodesmatal channel and might conduct cell-to-cell trafficking by channel gating regulation. Adjoining cells in plant tissues are interconnected via plasmodesmata, which allow the trafficking of low-molecular-mass materials across the cell wall between two cells. According to a recent model,19 transport of these substances could be regulated by the opening and/or closing of conductive channels to prevent infection by pathogens and to selectively control trafficking through the plasmodesmata. Furthermore, it has been speculated that morphoregulatory proteins around the plasmodesmata could be involved in channel regulation.20 Therefore, the ACh-mediated system might regulate the opening and/or closing of channels by interactions with morphoregulatory proteins at the cell wall matrix surrounding the plasmodesmata. Further research will be required to clarify the precise physiological roles of plant AChEs.  相似文献   

6.
7.
8.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

9.
10.
11.
The pathogenicity of Clostridium difficile (C. difficile) is mediated by the release of two toxins, A and B. Both toxins contain large clusters of repeats known as cell wall binding (CWB) domains responsible for binding epithelial cell surfaces. Several murine monoclonal antibodies were generated against the CWB domain of toxin A and screened for their ability to neutralize the toxin individually and in combination. Three antibodies capable of neutralizing toxin A all recognized multiple sites on toxin A, suggesting that the extent of surface coverage may contribute to neutralization. Combination of two noncompeting antibodies, denoted 3358 and 3359, enhanced toxin A neutralization over saturating levels of single antibodies. Antibody 3358 increased the level of detectable CWB domain on the surface of cells, while 3359 inhibited CWB domain cell surface association. These results suggest that antibody combinations that cover a broader epitope space on the CWB repeat domains of toxin A (and potentially toxin B) and utilize multiple mechanisms to reduce toxin internalization may provide enhanced protection against C. difficile-associated diarrhea.Key words: Clostridium difficile, toxin neutralization, therapeutic antibody, cell wall binding domains, repeat proteins, CROPs, mAb combinationThe most common cause of nosocomial antibiotic-associated diarrhea is the gram-positive, spore-forming anaerobic bacillus Clostridium difficile (C. difficile). Infection can be asymptomatic or lead to acute diarrhea, colitis, and in severe instances, pseudomembranous colitis and toxic megacolon.1,2The pathological effects of C. difficile have long been linked to two secreted toxins, A and B.3,4 Some strains, particularly the virulent and antibiotic-resistant strain 027 with toxinotype III, also produce a binary toxin whose significance in the pathogenicity and severity of disease is still unclear.5 Early studies including in vitro cell-killing assays and ex vivo models indicated that toxin A is more toxigenic than toxin B; however, recent gene manipulation studies and the emergence of virulent C. difficile strains that do not express significant levels of toxin A (termed “A B+”) suggest a critical role for toxin B in pathogenicity.6,7Toxins A and B are large multidomain proteins with high homology to one another. The N-terminal region of both toxins enzymatically glucosylates small GTP binding proteins including Rho, Rac and CDC42,8,9 leading to altered actin expression and the disruption of cytoskeletal integrity.9,10 The C-terminal region of both toxins is composed of 20 to 30 residue repeats known as the clostridial repetitive oligopeptides (CROPs) or cell wall binding (CWB) domains due to their homology to the repeats of Streptococcus pneumoniae LytA,1114 and is responsible for cell surface recognition and endocytosis.12,1517C. difficile-associated diarrhea is often, but not always, induced by antibiotic clearance of the normal intestinal flora followed by mucosal C. difficile colonization resulting from preexisting antibiotic resistant C. difficile or concomitant exposure to C. difficile spores, particularly in hospitals. Treatments for C. difficile include administration of metronidazole or vancomycin.2,18 These agents are effective; however, approximately 20% of patients relapse. Resistance of C. difficile to these antibiotics is also an emerging issue19,20 and various non-antibiotic treatments are under investigation.2025Because hospital patients who contract C. difficile and remain asymptomatic have generally mounted strong antibody responses to the toxins,26,27 active or passive immunization approaches are considered hopeful avenues of treatment for the disease. Toxins A and B have been the primary targets for immunization approaches.20,2833 Polyclonal antibodies against toxins A and B, particularly those that recognize the CWB domains, have been shown to effectively neutralize the toxins and inhibit morbidity in rodent infection models.31 Monoclonal antibodies (mAbs) against the CWB domains of the toxins have also demonstrated neutralizing capabilities; however, their activity in cell-based assays is significantly weaker than that observed for polyclonal antibody mixtures.3336We investigated the possibility of creating a cocktail of two or more neutralizing mAbs that target the CWB domain of toxin A with the goal of synthetically re-creating the superior neutralization properties of polyclonal antibody mixtures. Using the entire CWB domain of toxin A, antibodies were raised in rodents and screened for their ability to neutralize toxin A in a cell-based assay. Two mAbs, 3358 and 3359, that (1) both independently demonstrated marginal neutralization behavior and (2) did not cross-block one another from binding toxin A were identified. We report here that 3358 and 3359 use differing mechanisms to modify CWB-domain association with CHO cell surfaces and combine favorably to reduce toxin A-mediated cell lysis.  相似文献   

12.
13.
Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559T, which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559T contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559T, which identified it as an obligate chemoheterotroph.The phylum Bacteroidetes comprises 6 to ∼30% of total bacterial communities in the ocean by fluorescence in situ hybridization (8-10). Most marine Bacteroidetes are in the family Flavobacteriaceae, most of which are aerobic respiratory heterotrophs that form a well-defined clade by 16S rRNA phylogenetic analyses (4). The members of this family are well known for degrading macromolecules, including chitin, DNA, cellulose, starch, and pectin (17), suggesting their environmental roles as detritus decomposers in the ocean (6). Marine Polaribacter and Dokdonia species in the Flavobacteriaceae have also shown to have photoheterotrophic metabolism mediated by proteorhodopsins (11, 12).Several strains of the family Flavobacteriaceae were isolated from the Sargasso Sea and Oregon coast, using high-throughput culturing approaches (7). Croceibacter atlanticus HTCC2559T was cultivated from seawater collected at a depth of 250 m from the Sargasso Sea and was identified as a new genus in the family Flavobacteriaceae based on its 16S rRNA gene sequence similarities (6). Strain HTCC2559T met the minimal standards for genera of the family Flavobacteriaceae (3) on the basis of phenotypic characteristics (6).Here we report the complete genome sequence of Croceibacter atlanticus HTCC2559T. The genome sequencing was initiated by the J. Craig Venter Institute as a part of the Moore Foundation Microbial Genome Sequencing Project and completed in the current announcement. Gaps among contigs were closed by Genotech Co., Ltd. (Daejeon, Korea), using direct sequencing of combinatorial PCR products (16). The HTCC2559T genome was analyzed with a genome annotation system based on GenDB (14) at Oregon State University and with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (15, 16).The HTCC2559T genome is 2,952,962 bp long, with 33.9 mol% G+C content, and there was no evidence of plasmids. The number of protein-coding genes was 2,715; there were two copies of the 16S-23S-5S rRNA operon and 36 tRNA genes. The HTCC2559T genome contained genes for a complete tricarboxylic acid cycle, glycolysis, and a pentose phosphate pathway. The genome also contained sets of genes for metabolic enzymes involved in carotenoid biosynthesis and also a serine/glycine hydroxymethyltransferase, which is often associated with the assimilatory serine cycle (13). The potential for HTCC2559T to use bacterial type III polyketide synthase (PKS) needs to be confirmed because this organism had a naringenin-chalcone synthase (CHS) or chalcone synthase (EC 2.3.1.74), a key enzyme in flavonoid biosynthesis. CHS initiates the addition of three molecules of malonyl coenzyme A (malonyl-CoA) to a starter CoA ester (e.g., 4-coumaroyl-CoA) (1) and takes part in a few bacterial type III polyketide synthase systems (1, 2, 5, 18).The complete genome sequence confirmed that strain HTCC2559T is an obligate chemoheterotroph because no genes for phototrophy were found. As expected from physiological characteristics (6), the HTCC2559T genome contained a set of genes coding for enzymes required to degrade high-molecular-weight compounds, including peptidases, metallo-/serine proteases, pectinase, alginate lyases, and α-amylase.  相似文献   

14.
15.
16.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

17.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

18.
As the newest plant hormone, strigolactone research is undergoing an exciting expansion. In less than five years, roles for strigolactones have been defined in shoot branching, secondary growth, root growth and nodulation, to add to the growing understanding of their role in arbuscular mycorrhizae and parasitic weed interactions.1 Strigolactones are particularly fascinating as signaling molecules as they can act both inside the plant as an endogenous hormone and in the soil as a rhizosphere signal.2-4 Our recent research has highlighted such a dual role for strigolactones, potentially acting as both an endogenous and exogenous signal for arbuscular mycorrhizal development.5 There is also significant interest in examining strigolactones as putative regulators of responses to environmental stimuli, especially the response to nutrient availability, given the strong regulation of strigolactone production by nitrate and phosphate observed in many species.5,6 In particular, the potential for strigolactones to mediate the ecologically important response of mycorrhizal colonization to phosphate has been widely discussed. However, using a mutant approach we found that strigolactones are not essential for phosphate regulation of mycorrhizal colonization or nodulation.5 This is consistent with the relatively mild impairment of phosphate control of seedling root growth observed in Arabidopsis strigolactone mutants.7 This contrasts with the major role for strigolactones in phosphate control of shoot branching of rice and Arabidopsis8,9 and indicates that the integration of strigolactones into our understanding of nutrient response will be complex. New data presented here, along with the recent discovery of phosphate specific CLE peptides,10 indicates a potential role for PsNARK, a component of the autoregulation of nodulation pathway, in phosphate control of nodulation.  相似文献   

19.
Non-CG methylation is well characterized in plants where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in mammals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in mammals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.Key words: non-CG methylation, stem cells, Dnmt1, Dnmt3a, human methylomeIn plant cells non-CG sites are methylated de novo by Chromomethylase 3, DRM1 and DRM2. Chromomethylase 3, along with DRM1 and DRM2 combine in the maintenance of methylation at symmetric CpHpG as well as asymmetric DNA sites where they appear to prevent reactivation of transposons.1 DRM1 and DRM2 modify DNA de novo primarily at asymmetric CpH and CpHpH sequences targeted by siRNA.2Much less information is available on non-CG methylation in mammals. In fact, studies on mammalian non-CG methylation form a tiny fraction of those on CG methylation, even though data for cytosine methylation in other dinucleotides, CA, CT and CC, have been available since the late 1980s.3 Strong evidence for non-CG methylation was found by examining either exogenous DNA sequences, such as plasmid and viral integrants in mouse and human cell lines,4,5 or transposons and repetitive sequences such as the human L1 retrotransposon6 in a human embryonic fibroblast cell line. In the latter study, non-CG methylation observed in L1 was found to be consistent with the capacity of Dnmt1 to methylate slippage intermediates de novo.6Non-CG methylation has also been reported at origins of replication7,8 and a region of the human myogenic gene Myf3.9 The Myf3 gene is silenced in non-muscle cell lines but it is not methylated at CGs. Instead, it carries several methylated cytosines within the sequence CCTGG. Gene-specific non-CG methylation was also reported in a study of lymphoma and myeloma cell lines not expressing many B lineage-specific genes.10 The study focused on one specific gene, B29 and found heavy CG promoter methylation of that gene in most cell lines not expressing it. However, in two other cell lines where the gene was silenced, cytosine methylation was found almost exclusively at CCWGG sites. The authors provided evidence suggesting that CCWGG methylation was sufficient for silencing the B29 promoter and that methylated probes based on B29 sequences had unique gel shift patterns compared to non-methylated but otherwise identical sequences.10 The latter finding suggests that the presence of the non-CG methylation causes changes in the proteins able to bind the promoter, which could be mechanistically related to the silencing seen with this alternate methylation.Non-CG methylation is rarely seen in DNA isolated from cancer patients. However, the p16 promoter region was reported to contain both CG and non-CG methylation in breast tumor specimens but lacked methylation at these sites in normal breast tissue obtained at mammoplasty.11 Moreover, CWG methylation at the CCWGG sites in the calcitonin gene is not found in normal or leukemic lymphocyte DNA obtained from patients.12 Further, in DNA obtained from breast cancer patients, MspI sites that are refractory to digestion by MspI and thus candidates for CHG methylation were found to carry CpG methylation.13 Their resistance to MspI restriction was found to be caused by an unusual secondary structure in the DNA spanning the MspI site that prevents restriction.13 This latter observation suggests caution in interpreting EcoRII/BstNI or EcoRII/BstOI restriction differences as due to CWG methylation, since in contrast to the 37°C incubation temperature required for full EcoRII activity, BstNI and BstOI require incubation at 60°C for full activity where many secondary structures are unstable.The recent report by Lister et al.14 confirmed a much earlier report by Ramsahoye et al.15 suggesting that non-CG methylation is prevalent in mammalian stem cell lines. Nearest neighbor analysis was used to detect non-CG methylation in the earlier study on the mouse embryonic stem (ES) cell line,15 thus global methylation patterning was assessed. Lister et al.14 extend these findings to human stem cell lines at single-base resolution with whole-genome bisulfite sequencing. They report14 that the methylome of the human H1 stem cell line and the methylome of the induced pluripotent IMR90 (iPS) cell line are stippled with non-CG methylation while that of the human IMR90 fetal fibroblast cell line is not. While the results of the two studies are complementary, the human methylome study addresses locus specific non-CG methylation. Based on that data,14 one must conclude that non-CG methylation is not carefully maintained at a given site in the human H1 cell line. The average non-CG site is picked up as methylated in about 25% of the reads whereas the average CG methylation site is picked up in 92% of the reads. Moreover, non-CG methylation is not generally present on both strands and is concentrated in the body of actively transcribed genes.14Even so, the consistent finding that non-CG methylation appears to be confined to stem cell lines,14,15 raises the possibility that cancer stem cells16 carry non-CG methylation while their nonstem progeny in the tumor carry only CG methylation. Given the expected paucity of cancer stem cells in a tumor cell population, it is unlikely that bisulfite sequencing would detect non-CG methylation in DNA isolated from tumor cells since the stem cell population is expected to be only a very minor component of tumor DNA. Published sequences obtained by bisulfite sequencing generally report only CG methylation, and to the best of our knowledge bisulfite sequenced tumor DNA specimens have not reported non-CG methylation. On the other hand, when sequences from cell lines have been reported, bisulfite-mediated genomic sequencing8 or ligation mediated PCR17 methylcytosine signals outside the CG site have been observed. In a more recent study plasmid DNAs carrying the Bcl2-major breakpoint cluster18 or human breast cancer DNA13 treated with bisulfite under non-denaturing conditions, cytosines outside the CG side were only partially converted on only one strand18 or at a symmetrical CWG site.13 In the breast cancer DNA study the apparent CWG methylation was not detected when the DNA was fully denatured before bisulfite treatment.13In both stem cell studies, non-CG methylation was attributed to the Dnmt3a,14,15 a DNA methyltransferase with similarities to the plant DRM methyltransferase family19 and having the capacity to methylate non-CG sites when expressed in Drosophila melanogaster.15 DRM proteins however, possess a unique permuted domain structure found exclusively in plants19 and the associated RNA-directed non-CG DNA methylation has not been reproducibly observed in mammals despite considerable published2023 and unpublished efforts in that area. Moreover, reports where methylation was studied often infer methylation changes from 5AzaC reactivation studies24 or find that CG methylation seen in plants but not non-CG methylation is detected.21,22,25,26 In this regard, it is of interest that the level of non-CG methylation reported in stem cells corresponds to background non-CG methylation observed in vitro with human DNA methyltransferase I,27 and is consistent with the recent report that cultured stem cells are epigenetically unstable.28The function of non-CG methylation remains elusive. A role in gene expression has not been ruled out, as the studies above on Myf3 and B29 suggest.9,10 However, transgene expression of the bacterial methyltransferase M.EcoRII in a human cell line (HK293), did not affect the CG methylation state at the APC and SerpinB5 genes29 even though the promoters were symmetrically de novo methylated at mCWGs within each CCWGG sequence in each promoter. This demonstrated that CG and non-CG methylation are not mutually exclusive as had been suggested by earlier reports.9,10 That observation is now extended to the human stem cell line methylome where CG and non-CG methylation co-exist.14 Gene expression at the APC locus was likewise unaffected by transgene expression of M.EcoRII. In those experiments genome wide methylation of the CCWGG site was detected by restriction analysis and bisulfite sequencing,29 however stem cell characteristics were not studied.Many alternative functions can be envisioned for non-CG methylation, but the existing data now constrains them to functions that involve low levels of methylation that are primarily asymmetric. Moreover, inheritance of such methylation patterns requires low fidelity methylation. If methylation were maintained with high fidelity at particular CHG sites one would expect that the spontaneous deamination of 5-methylcytosine would diminish the number of such sites, so as to confine the remaining sites to those positions performing an essential function, as is seen in CG methylation.3033 However, depletion of CWG sites is not observed in the human genome.34 Since CWG sites account for only about 50% of the non-CG methylation observed in the stem cell methylome14 where methylated non-CG sites carry only about 25% methylation, the probability of deamination would be about 13% of that for CWG sites that are subject to maintenance methylation in the germ line. Since mutational depletion of methylated cytosines has to have its primary effect on the germ line, if the maintenance of non-CG methylation were more accurate and more widespread, one would have had to argue that stem cells in the human germ lines lack CWG methylation. As it is the data suggests that whatever function non-CG methylation may have in stem cells, it does not involve accurate somatic inheritance in the germ line.The extensive detail on non-CG methylation in the H1 methylome14 raises interesting questions about the nature of this form of methylation in human cell lines. A key finding in this report is the contrast between the presence of non-CG methylation in the H1 stem cell line and its absence in the IMR90 human fetal lung fibroblast cell line.14 This suggests that it may have a role in the origin and maintenance of the pluripotent lineage.14By analogy with the well known methylated DNA binding proteins specific for CG methylation,35 methylated DNA binding proteins that selectively bind sites of non-CG methylation are expected to exist in stem cells. Currently the only protein reported to have this binding specificity is human Dnmt1.3638 While Dnmt1 has been proposed to function stoichiometrically39 and could serve a non-CG binding role in stem cells, this possibility and the possibility that other stem-cell specific non-CG binding proteins might exist remain to be been explored.Finally, the nature of the non-CG methylation patterns in human stem cell lines present potentially difficult technical problems in methylation analysis. First, based on the data in the H1 stem cell methylome,40 a standard MS-qPCR for non-CG methylation would be impractical because non-CG sites are infrequent, rarely clustered and are generally characterized by partial asymmetric methylation. This means that a PCR primer that senses the 3 adjacent methylation sites usually recommended for MS-qPCR primer design41,42 cannot be reliably found. For example in the region near Oct4 (Chr6:31,246,431), a potential MS-qPCR site exists with a suboptimal set of two adjacent CHG sites both methylated on the + strand at Chr6:31,252,225 and 31,252,237.14,40 However these sites were methylated only in 13/45 and 30/52 reads. Thus the probability that they would both be methylated on the same strand is about 17%. Moreover, reverse primer locations containing non-CG methylation sites are generally too far away for practical bisulfite mediated PCR. Considering the losses associated with bisulfite mediated PCR43 the likelihood that such an MS-qPCR system would detect non-CG methylation in the H1 cell line or stem cells present in a cancer stem cell niche44,45 is very low.The second difficulty is that methods based on the specificity of MeCP2 and similar methylated DNA binding proteins for enriching methylated DNA (e.g., MIRA,46 COMPARE-MS47) will discard sequences containing non-CG methylation since they require cooperative binding afforded by runs of adjacent methylated CG sites for DNA capture. This latter property of the methylated cytosine capture techniques makes it also unlikely that methods based on 5-methylcytosine antibodies (e.g., meDIP48) will capture non-CG methylation patterns accurately since the stem cell methylome shows that adjacent methylated non-CG sites are rare in comparison to methylated CG sites.14In summary, whether or not mammalian stem cells in general or human stem cells in particular possess functional plant-like methylation patterns is likely to continue to be an interesting and challenging question. At this point we can conclude that the non-CG patterns reported in human cells appear to differ significantly from the non-CG patterns seen in plants, suggesting that they do not have a common origin or function.  相似文献   

20.
It is remarkable that although auxin was the first growth-promoting plant hormone to be discovered, and although more researchers work on this hormone than on any other, we cannot be definitive about the pathways of auxin synthesis in plants. In 2001, there appeared to be a dramatic development in this field, with the announcement of a new gene,1 and a new intermediate, purportedly from the tryptamine pathway for converting tryptophan to the main endogenous auxin, indole-3-acetic acid (IAA). Recently, however, we presented evidence challenging the original and subsequent identifications of the intermediate concerned.2Key words: auxin synthesis, YUCCA, tryptamine, N-hydroxytryptamineThe new gene was termed YUC, and the putative intermediate is N-hydroxytryptamine. It was claimed that the YUC protein, a flavin-containing monooxygenase, converts tryptamine (formed from tryptophan by decarboxylation) to N-hydroxytryptamine, which is converted via other intermediates to IAA. When the YUC gene was expressed in E. coli and the resulting protein incubated with tryptamine, a weak TLC spot resulted, which produced a mass spectrum said to match that expected from N-hydroxytryptamine.1 However, the authors did not report mass spectral data from authentic N-hydroxytryptamine, and their suggested fragmentation pattern breaks a fundamental rule of mass spectrometry (the even-electron rule).2 Nevertheless, N-hydroxytryptamine has been added to virtually all IAA synthesis schemes published since 2001.3In 2010, LeClere et al. expressed a maize YUC gene in E. coli,4 and again claimed that the resulting protein converted tryptamine to N-hydroxytryptamine. This time, the mass spectrum was of better quality, but we have shown that it does not match that of authentic N-hydroxytryptamine, synthesised in our laboratory.2,5 We have demonstrated by electrospray tandem mass spectrometry that the protonated molecule of N-hydroxytryptamine (m/z 177) fragments to give an abundant ion at m/z 144. This was the crucial piece of evidence that the product obtained by LeClere et al. was not N-hydroxytryptamine, since their compound gave an abundant ion at m/z 160, and no ion at m/z 144.4The m/z 144 ion is formed by loss of NH2OH (hydroxylamine), as shown by accurate mass determinations (Fig. 1). In other words, it is the alkyl-amine bond that is broken; this is also the case for tryptamine and serotonin. In the latter case, an m/z 160 ion results through loss of ammonia, because the hydroxyl group on the indole ring (at position 5) is retained in the fragment. The compound obtained by LeClere et al. when protonated, also had a mass of 177, consistent with a hydroxylated tryptamine, and the abundant m/z 160 ion indicates that this fragment, as in serotonin, retains the hydroxyl group.4 However, we believe that the LeClere et al. product is not serotonin, because of dissimilar behavior on thin layer chromatography. Apart from the probability that it is a hydroxylated tryptamine, the identity of the LeClere et al. product is not known.Open in a separate windowFigure 1Fragmentation of (A) N-hydroxytryptamine, (B) tryptamine and (C) 5-hydroxytryptamine (serotonin), as determined by MS/MS analysis.2 The m/z ratios of the fragments produced are indicated. The loss of neutral hydroxylamine (A) or ammonia (B and C) involves heterolytic cleavage and/or hydrogen atom rearrangement, and consequent retention of the positive charge on the remaining indole-containing fragment.14It is interesting to contrast the previous “identifications” of N-hydroxytryptamine1,4 with the identification of gibberellins, during the period when most of the gibberellins were identified (1970–1990). There were rigorous criteria for the identification of these compounds, imposed by a triumvirate of “Gibberellin Godfathers”: Jake MacMillan, Nobatuka Takahashi and the late Bernard Phinney, and more latterly by Caporegimes such as Peter Hedden and Yuji Kamiya. Three of the present authors (James B. Reid, Noel W. Davies and John J. Ross) experienced at first hand the rigour with which these criteria were applied.Essentially, any identification of an endogenous gibberellin was viewed with suspicion unless a synthesized form of that compound (a standard, confirmed by NMR) was available for comparison. For a firm identification, the retention time on GC should be identical between the standard and the putative compound, on the same GC instrument. Next, the electron ionization fragmentation patterns of the compound of interest and the standard should match, again on the one GC-MS system. It was not considered adequate to compare a spectrum of the compound of interest with published spectra from another laboratory. Often a spectrum from a plant extract might contain extra ions, contributed by “interfering” compounds and this was sometimes acceptable. However, the absence of ions that should be present was usually sufficient to render the identification unconvincing. Electrospray mass spectra are intrinsically much poorer in information than electron ionisation spectra since most or all of the signal is concentrated in the protonated molecule, and tandem mass spectrometry (MS/MS) is required to create diagnostic fragment ions. The MS/MS spectrum of another hydroxylated tryptamine that we have examined is dominated by a strong m/z 160 ion, and discrimination between hydroxylated tryptamines on the basis of MS alone could be problematic. N-Hydroxytryptamine is the exception in this regard, and it can be easily distinguished.Another technique that has been used extensively in gibberellin research, and in early auxin research as well, is “feeding” labelled compounds and determining the fate of the label concerned (often deuterium or 13C). This technique contributed strongly to the identification of most of the candidate auxin pathways.6 Its power should not be underestimated, and yet in the auxin field, it was under-utilised during much of the later 1990s and the 2000s. We have used this technique to demonstrate that tryptamine is not converted to N-hydroxytryptamine in pea roots or seeds.2,5 In fact, to our knowledge, N-hydroxytryptamine has not yet been identified in any plant species.N-Hydroxytryptamine has been the main link between the YUC genes and the tryptamine pathway, and this link is now called into question. In fact, there are some indications that YUCCAs might not be concerned with IAA synthesis at all. The floozy mutant of petunia has a strong phenotype but normal levels of IAA.7 The yuc1 yuc2 yuc4 yuc6 quadruple mutant of Arabidopsis also exhibits a whole-plant phenotype but again its IAA content is not reduced compared with WT plants.8 Indeed, as yet there is not a single instance where knocking out YUC function has been shown to significantly reduce IAA content. We should note also that while overexpression of YUC genes does lead to elevated IAA content, the increase is small (up to about 2-fold1,9) compared with the increases recorded for other IAA over-producing mutants; for example, sur1 (also known as rty) and sur2, which can contain 5 to 20 times more IAA than the WT.10-12Therefore, it is possible that YUC catalyses a reaction or reactions in another pathway leading to another compound that is required for normal plant development; hence the phenotypic consequences of loss-of-function yuc mutants. This compound might be another auxin or auxinlike compound, which might explain why elevating auxin content genetically sometimes rescues yuc phenotypes.13 The suggestion that YUC controls the synthesis of another compound was made as early as 2002,7 but has attracted little attention from auxin biologists. There seems little doubt that YUCCAs play essential roles in plant development, as evidenced by the phenotypes of knockout mutants, even though it is sometimes necessary to construct multiple mutants to observe strong phenotypes.13 Furthermore, YUC genes are found in a wide range species, and we recently extended the list to include pea.2 However, the almost universal placement of N-hydroxytryptamine in auxin synthesis schemes since 2001 is now called into question by the recently published evidence.2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号