首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently isolated and identified a novel mitochondrial metalloprotease, pre-sequence protease (PreP) from potato and shown that it degrades mitochondrial pre-sequences. PreP belongs to the pitrilysin protease family and contains an inverted zinc-binding motif. To further investigate the degradation of targeting peptides, we have overexpressed the Arabidopsis thaliana homologue of PreP, zinc metalloprotease (Zn-MP), in Escherichia coli . We have characterized the recombinant Zn-MP with respect to its catalytic site, substrate specificity and intracellular localization. Mutagenesis studies of the residues involved in metal binding identified the histidines and the proximal glutamate as essential residues for the proteolytic activity. Substrate specificity studies showed that the Zn-MP has the ability to degrade both mitochondrial pre-sequences and chloroplastic transit peptides, as well as other unstructured peptides. The Zn-MP does not recognize an amino acid sequence per se . Immunological studies and proteolytic activity measurements in isolated mitochondria and chloroplasts revealed the presence of the Zn-MP in both organelles. Furthermore, the Zn-MP was found to be dually imported to both mitochondria and chloroplasts in vitro . In summary, our data show that the Zn-MP is present and serves the same function in chloroplasts as in mitochondria – degradation of targeting peptides.  相似文献   

2.
3.
Two novel metalloproteases from Arabidopsis thaliana, termed AtPrePI and AtPrePII, were recently identified and shown to degrade targeting peptides in mitochondria and chloroplasts using an ambiguous targeting peptide. AtPrePI and AtPrePII are classified as dually targeted proteins as they are targeted to both mitochondria and chloroplasts. Both proteases harbour an inverted metal binding motif and belong to the pitrilysin subfamily A. Here we have investigated the subsite specificity of AtPrePI and AtPrePII by studying their proteolytic activity against the mitochondrial F(1)beta pre-sequence, peptides derived from the F(1)beta pre-sequence as well as non-mitochondrial peptides and proteins. The degradation products were analysed, identified by MALDI-TOF spectrometry and superimposed on the 3D structure of the F(1)beta pre-sequence. AtPrePI and AtPrePII cleaved peptides that are in the range of 10 to 65 amino acid residues, whereas folded or longer unfolded peptides and small proteins were not degraded. Both proteases showed preference for basic amino acids in the P(1) position and small, uncharged amino acids or serine residues in the P'(1) position. Interestingly, both AtPrePI and AtPrePII cleaved almost exclusively towards the ends of the alpha-helical elements of the F(1)beta pre-sequence. However, AtPrePI showed a preference for the N-terminal amphiphilic alpha-helix and positively charged amino acid residues and degraded the F(1)beta pre-sequence into 10-16 amino acid fragments, whereas AtPrePII did not show any positional preference and degraded the F(1)beta pre-sequence into 10-23 amino acid fragments. In conclusion, despite the high sequence identity between AtPrePI and AtPrePII and similarities in cleavage specificities, cleavage site recognition differs for both proteases and is context and structure dependent.  相似文献   

4.
The assembly of the photosynthetic apparatus requires the import of numerous cytosolically synthesised proteins and their correct targeting into or across the thylakoid membrane. Biochemical and genetic studies have revealed the operation of several targeting pathways for these proteins, some of which are used for thylakoid lumen proteins whereas others are utilised by membrane proteins. Some pathways can be traced back to the prokarytoic ancestors of chloroplasts but at least one pathway appears to have arisen in response to the transfer of genes from the organelle to the nucleus. In this article we review recent findings in this field that point to the operation of a mechanistically unique protein translocase in both plastids and bacteria, and we discuss emerging data that reconcile the remarkable variety of targeting pathways with the natures of the substrate precursor proteins.  相似文献   

5.
Mitochondria evolved from an endosymbiotic proteobacterium in a process that required the transfer of genes from the bacterium to the host cell nucleus, and the translocation of proteins thereby made in the host cell cytosol into the internal compartments of the organelle. According to current models for this evolution, two highly improbable events are required to occur simultaneously: creation of a protein translocation machinery to import proteins back into the endosymbiont and creation of targeting sequences on the protein substrates themselves. Using a combination of two independent prediction methods, validated through tests on simulated genomes, we show that at least 5% of proteins encoded by an extant proteobacterium are predisposed for targeting to mitochondria, and propose we that mitochondrial targeting information was preexisting for many proteins of the endosymbiont. We analyzed a family of proteins whose members exist both in bacteria and in mitochondria of eukaryotes and show that the amino-terminal extensions occasionally found in bacterial family members can function as a crude import sequence when the protein is presented to isolated mitochondria. This activity leaves the development of a primitive translocation channel in the outer membrane of the endosymbiont as a single hurdle to initiating the evolution of mitochondria.  相似文献   

6.
Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import.  相似文献   

7.
介绍了一种利用噬菌体肽库的新技术-体内噬菌体展示(n vivo phage display)。这项技术是在活的动物体内进行的肽库筛选。将肽库通过静脉注射到动物体内,因为血管分子内皮的异质性,噬菌体可以选择性地导向不同组织,这样就可以筛到与特定组织特异结合的噬菌体展示肽。动物实验表明,前凋亡小肽和细胞毒素与导各肽偶联后 治疗效果。这项技术应用于临床,一定有助于肿瘤等疾病的导向治疗和造影技术的发展。  相似文献   

8.
The precursors of the F1-ATPase -subunits fromNicotiana plumbaginifolia andNeurospora crassa were imported into isolated spinach (Spinacia oleracea L.) leaf mitochondria. Both F1 precursors were imported and processed to mature size products. No import of the mitochondrial precursor proteins into isolated intact spinach chloroplasts was seen. Moreover, the precursor of the 33 kDa protein of photosynthetic water-splitting enzyme was not imported into the leaf mitochondria. This study provides the first experimental report ofin vitro import of precursor proteins into plant mitochondria isolated from photosynthetic tissue and enables studies of protein sorting between mitochondria and chloroplasts in a system which is homologous with respect to organelles. The results suggest a high organellar specificity in the plant cell for the cytoplasmically synthesized precursor proteins.  相似文献   

9.
Protein biogenesis is a complex process, and complexity is greatly increased in eukaryotic cells through specific targeting of proteins to different organelles. To direct targeting, organellar proteins carry an organelle-specific targeting signal for recognition by organelle-specific import machinery. However, the situation is confusing for transmembrane domain (TMD)-containing signal-anchored (SA) proteins of various organelles because TMDs function as an endoplasmic reticulum (ER) targeting signal. Although ER targeting of SA proteins is well understood, how they are targeted to mitochondria and chloroplasts remains elusive. Here, we investigated how the targeting specificity of SA proteins is determined for specific targeting to mitochondria and chloroplasts. Mitochondrial targeting requires multiple motifs around and within TMDs: a basic residue and an arginine-rich region flanking the N- and C-termini of TMDs, respectively, and an aromatic residue in the C-terminal side of the TMD that specify mitochondrial targeting in an additive manner. These motifs play a role in slowing down the elongation speed during translation, thereby ensuring mitochondrial targeting in a co-translational manner. By contrast, the absence of any of these motifs individually or together causes at varying degrees chloroplast targeting that occurs in a post-translational manner.  相似文献   

10.
Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but also have an important role to play in the sustainability of our ecosystem as they maintain the delicate balance between autotrophs and heterotrophs, which fix and utilize energy, respectively. Therefore, stricter policies on antibiotic usage are absolutely required as their use in research confounds experimental outcomes, and their uncontrolled applications in medicine and agriculture pose a significant threat to a balanced ecosystem and the well‐being of these endosymbionts that are essential to sustain health. Also watch the Video Abstract .  相似文献   

11.
Protein targeting to plant mitochondria and chloroplasts is usually very specific and involves targeting sequences located at the amino terminus of the precursor. We challenged the system by using combinations of mitochondrial and chloroplast targeting sequences attached to reporter genes. The sequences coding for the presequence of the mitochondrial F1-ATPase -subunit and the transit peptide of the chloroplast chlorophyll a/b-binding protein, both from Nicotiana plumbaginifolia, were fused together in both combinations, then linked to the reporter genes, chloramphenicol acetyl transferase (CAT) and -glucuronidase (GUS), and introduced into tobacco. Analysis of CAT and GUS activities and proteins in the subcellular fractions revealed that the chloroplast transit peptide alone was not sufficient to target the reporter proteins to chloroplasts. However, when the mitochondrial -presequence was inserted downstream of the chloroplast sequence, import of CAT and GUS into chloroplasts was observed. Using the reciprocal system, the mitochondrial presequence alone was able to direct transport of CAT and, to a lesser extent, GUS to mitochondria; the GUS targeting to mitochondria was increased when the chloroplast targeting sequence was linked downstream of the mitochondrial presequence. Immuno-detection experiments using subcellular fractions confirmed the results observed by enzymatic assays. These results indicate the importance of the amino-terminal position of the targeting sequence in determining protein import specificity and are considered within the hypothesis of a co-translational protein import.  相似文献   

12.
J Huang  E Hack  R W Thornburg    A M Myers 《The Plant cell》1990,2(12):1249-1260
A fusion protein was expressed in transgenic tobacco and yeast cells to examine the functional conservation of mechanisms for importing precursor proteins from the cytosol into mitochondria and chloroplasts. The test protein consisted of the mitochondrial leader peptide from the yeast precursor to cytochrome oxidase subunit Va (prC5) fused to the reporter protein chloramphenicol acetyltransferase. This protein, denoted prC5/CAT, was transported into the mitochondrial interior in yeast and tobacco cells. In both organisms, the mitochondrial form of prC5/CAT was smaller than the primary translation product, suggesting that proteolytic processing occurred during the transport process. prC5/CAT also was translocated into chloroplasts in vivo, accumulating to approximately the same levels as in plant mitochondria. However, accumulation of prC5/CAT in chloroplasts relative to mitochondria varied with the conditions under which plants were grown. The chloroplast form of prC5/CAT also appeared to have been proteolytically processed, yielding a mature protein of the same apparent size as that seen in mitochondria of either tobacco or yeast. Chloramphenicol acetyltransferase lacking a mitochondrial targeting peptide did not associate with either chloroplasts or mitochondria. The results demonstrated that in plant cells a single leader peptide can interact functionally with the protein translocation systems of both chloroplasts and mitochondria, and raised the possibility that certain native proteins might be shared between these two organelles.  相似文献   

13.
Plants experience a number of limiting factors, as drought and heat, which are often coinciding stress factors in natural environment. This study evaluated the changes in mesophyll cell ultrastructure in the leaves of two varieties of winter wheat (Triticum aestivum L.), differing in their drought tolerance, under individual or combined drought and heat treatment. Although the individual stress factors affected leaf ultrastructure, the damaging effect of the combined drought and heat was more pronounced and manifested certain differences between genotypes. Chloroplasts and mitochondria were affected in a variety-specific manner under all adverse treatments. The organelles of the drought-tolerant Katya were better preserved than those in the sensitive variety Sadovo. Leaf ultrastructure can be considered as one of the important characteristics in the evaluation of the drought susceptibility of different wheat varieties.  相似文献   

14.
Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.  相似文献   

15.
16.
Much attention has been paid to the signal sequences of eukaryotic protoporphyrinogen oxidases (protoxes); both the organelles targeted by protoxes and the role of protoxes in conferring resistance against protox‐inhibiting herbicides, such as oxyfluorfen, have been examined. However, there have been no reports on the translocation of prokaryotic protoxes. This study investigated the targeting ability of Myxococcus xanthus protox in vitro and in vivo. In an in vitro translocation assay using a dual import system, M. xanthus protein was detected in chloroplasts and mitochondria, suggesting that the M. xanthus protox protein was targeted into both organelles. In order to confirm the in vitro dual targeting ability of M. xanthus, we used a stable transgenic strategy to investigate dual targeting in vivo. In transgenic rice plants overexpressing M. xanthus protox, M. xanthus protox antibody cross‐reacted with proteins with predicted molecular masses of 50 kDa from both chloroplasts and mitochondria, and this in vivo transgene expression corresponded to a prominent increase in chloroplastic and mitochondrial protox activity. Seeds from the transgenic lines M4 and M7 germinated in solid Murashige and Skoog media of up to 500 µm of oxyfluorfen, whereas wild‐type seeds did not germinate in 1 µm . After 4‐week‐old‐rice plants were treated with oxyfluorfen for 3 d, lines M4 and M7 exhibited normal growth, whereas the wild‐type line was severely bleached and necrotized. The herbicidal resistance is attributed to the insignificant accumulation of photodynamic protoporphyrin IX in cytosol because the high chloroplastic and mitochondrial protox activity in oxyfluorfen‐treated transgenic lines, compared with that in oxyfluorfen‐treated and untreated wild‐type plants, metabolizes protoporphyrinogen IX to chlorophyll and heme. A practical application of the dual targeting of M. xanthus protox for obtaining outstanding resistance to peroxidizing herbicides is discussed.  相似文献   

17.
Autotransporters (ATs) of Gram-negative bacteria are often produced with an unusual signal peptide that carries a conserved N-terminal extension. Using combined in vitro and in vivo approaches we show that the extension of the AT hemoglobin protease (Hbp) does not affect targeting of Hbp via the SRP-pathway, suggesting that the extension is not involved in targeting pathway selection.  相似文献   

18.
Chloroplastic membrane proteins can be targeted to any of three distinct membrane systems, i.e., the outer envelope membrane (OEM), inner envelope membrane (IEM), and thylakoid membrane. This complex structure of chloroplasts adds significantly to the challenge of studying protein targeting to various membrane sub-compartments within a chloroplast. In this investigation, we examined the role played by the transmembrane domain (TMD) in directing membrane proteins to either the IEM or thylakoid membrane. Using the IEM protein, Arc6 (Accumulation and Replication of Chloroplasts 6), we exchanged the stop-transfer TMD of Arc6 with various TMDs derived from different IEM and thylakoid membrane proteins and monitored the subcellular localization of these Arc6-hybrid proteins. We showed that when the Arc6 TMD was replaced with a TMD derived from various thylakoid membrane proteins, these Arc6(thylTMD) hybrid proteins could be directed to the thylakoid membrane rather than to the IEM. Conversely, when the TMD of the thylakoid membrane proteins, STN8 (State Transition protein kinase 8) or Plsp1 (Plastidic type I signal peptidase 1), was replaced with the stop-transfer TMD of Arc6, STN8 and Plsp1 were halted at the IEM. From our investigation, we conclude that the TMD plays a critical role in targeting integral membrane proteins to either the IEM or thylakoid membrane.  相似文献   

19.
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N‐terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein‐like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α‐helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.  相似文献   

20.
Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated.Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits.Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号