首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is aimed at establishing priorities for the optimal conservation of genetic diversity among a comprehensive group of 40 cattle breeds from the Iberian Peninsula. Different sets of breed contributions to diversity were obtained with several methods that differ in the relative weight attributed to the within- and between-breed components of the genetic variation. The contributions to the Weitzman diversity and the expected heterozygosity (He) account for between- and within-breed variation only, respectively. Contributions to the core set obtained for several kinship matrices, incorporate both sources of variation, as well as the combined contributions of Ollivier and Foulley and those of Caballero and Toro. In general, breeds that ranked high in the different core set applications also ranked high in the contribution to the global He, for example, Sayaguesa, Retinta, Monchina, Berrenda en Colorado or Marismeña. As expected, the Weitzman method prioritised breeds with low contributions to the He, like Mallorquina, Menorquina, Berrenda en Negro, Mostrenca, Vaca Palmera or Mirandesa, all showing highly negative contributions to He – that is, their removal would significantly increase the average He. Weighing the within- and between-breed components with the FST produced a balanced set of contributions in which all the breeds ranking high in both approaches show up. Unlike the other methods, the contributions to the diversity proposed by Caballero and Toro prioritised a good number of Portuguese breeds (Arouquesa, Barrosã, Mertolenga and Preta ranking highest), but this might be caused by a sample size effect. Only Sayaguesa ranked high in all the methods tested. Considerations with regard to the conservation scheme should be made before adopting any of these approaches: in situv. cryoconservation, selection and adaptation within the breeds v. crossbreeding or the creation of synthetic breeds. There is no general consensus with regard to balancing within- and between-breed diversity and the decision of which source to favour will depend on the particular scenario. In addition to the genetic information, other factors, such as geographical, historical, economic, cultural, etc., also need to be considered in the formulation of a conservation plan. All these aspects will ultimately influence the distribution of resources by the decision-makers.  相似文献   

2.
Genetic diversity within and between breeds (and lines) of pigs was investigated. The sample comprised 68 European domestic breeds (and lines), including 29 local breeds, 18 varieties of major international breeds, namely Duroc, Hampshire, Landrace, Large White and Piétrain, and 21 commercial lines either purebred or synthetic, to which the Chinese Meishan and a sample of European wild pig were added. On average 46 animals per breed were sampled (range 12–68). The genetic markers were microsatellites (50 loci) and AFLP (amplified fragment length polymorphism, 148 loci). The analysis of diversity showed that the local breeds accounted for 56% of the total European between-breed microsatellite diversity, and slightly less for AFLP, followed by commercial lines and international breeds. Conversely, the group of international breeds contributed most to within-breed diversity, followed by commercial lines and local breeds. Individual breed contributions to the overall European between- and within-breed diversity were estimated. The range in between-breed diversity contributions among the 68 breeds was 0.04–3.94% for microsatellites and 0.24–2.94% for AFLP. The within-breed diversity contributions varied very little for both types of markers, but microsatellite contributions were negatively correlated with the between-breed contributions, so care is needed in balancing the two types of contribution when making conservation decisions. By taking into account the risks of extinction of the 29 local breeds, a cryopreservation potential (priority) was estimated for each of them.  相似文献   

3.
Preservation of rare genetic stocks requires assessment of within-population genetic diversity and between-population differentiation to make inferences on their degree of uniqueness. A total of 194 Tuscan cattle (44 Calvana, 35 Chianina, 25 Garfagnina, 31 Maremmana, 31 Mucca Pisana and 28 Pontremolese) individuals were genotyped for 34 microsatellite markers. Moreover, 56 samples belonging to Argentinean Creole and Asturiana de la Montaña cattle breeds were used as an outgroup. Genetic diversity was quantified in terms of molecular coancestry and allelic richness. STRUCTURE analyses showed that the Tuscan breeds have well-differentiated genetic backgrounds, except for the Calvana and Chianina breeds, which share the same genetic ancestry. The between-breed Nei's minimum distance (Dm) matrices showed that the pair Calvana–Chianina was less differentiated (0.049 ± 0.006). The endangered Tuscan breeds (Calvana, Garfagnina, Mucca Pisana and Pontremolese) made null or negative contributions to diversity, except for the Mucca Pisana contribution to allelic richness (CT = 1.8%). The Calvana breed made null or negative within-breed contributions (f¯W = 0.0%; CW = −0.4%). The Garfagnina and Pontremolese breeds made positive contributions to between-breed diversity but negative and high within-breed contributions, thus suggesting population bottleneck with allelic losses and increase of homozygosity in the population. Exclusion of the four endangered Tuscan cattle breeds did not result in losses in genetic diversity (f¯T = −0.7%; CT = −1.2%), whereas exclusion of the non-endangered breeds (Chianina and Maremmana) did (f¯T = 2.1%; CT = 3.9%); the simple exclusion of the Calvana breed from the former group led to losses in genetic diversity (f¯T = 0.47%; CT = 2.34%), indicating a diverse significance for this breed. We showed how quantifying both within-population diversity and between-population differentiation in terms of allelic frequencies and allelic richness provides different and complementary information on the genetic backgrounds assessed and may help to implement priorities and strategies for conservation in livestock.  相似文献   

4.

Background

Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions.

Methods

A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity.

Results

Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds.

Conclusions

Conservation priorities differed significantly according to the weight given to within- and between-breed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival.  相似文献   

5.
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.  相似文献   

6.

Background

Native pig breeds in the Iberian Peninsula are broadly classified as belonging to either the Celtic or the Mediterranean breed groups, but there are other local populations that do not fit into any of these groups. Most of the native pig breeds in Iberia are in danger of extinction, and the assessment of their genetic diversity and population structure, relationships and possible admixture between breeds, and the appraisal of conservation alternatives are crucial to adopt appropriate management strategies.

Methods

A panel of 24 microsatellite markers was used to genotype 844 animals representing the 17 most important native swine breeds and wild populations existing in Portugal and Spain and various statistical tools were applied to analyze the results.

Results

Genetic diversity was high in the breeds studied, with an overall mean of 13.6 alleles per locus and an average expected heterozygosity of 0.80. Signs of genetic bottlenecks were observed in breeds with a small census size, and population substructure was present in some of the breeds with larger census sizes. Variability among breeds accounted for about 20% of the total genetic diversity, and was explained mostly by differences among the Celtic, Mediterranean and Basque breed groups, rather than by differences between domestic and wild pigs. Breeds clustered closely according to group, and proximity was detected between wild pigs and the Mediterranean cluster of breeds. Most breeds had their own structure and identity, with very little evidence of admixture, except for the Retinto and Entrepelado varieties of the Mediterranean group, which are very similar. Genetic influence of the identified breed clusters extends beyond the specific geographical areas across borders throughout the Iberian Peninsula, with a very sharp transition from one breed group to another. Analysis of conservation priorities confirms that the ranking of a breed for conservation depends on the emphasis placed on its contribution to the between- and within-breed components of genetic diversity.

Conclusions

Native pig breeds in Iberia reveal high levels of genetic diversity, a solid breed structure and a clear organization in well-defined clusters.  相似文献   

7.
Recent studies in the literature have appliedphylogenetic methods based on genetic distancesto set priorities for conservation of domesticanimal breeds. While these methods may beappropriate for between-species conservation,they are clearly inappropriate forwithin-species breed conservation, because theyignore within-breed variation. In this paper weshow the basic tools to analyse geneticdiversity in subdivided populations withinspecies, and illustrate the errors incurred byapplying methods based exclusively on geneticdistances. We also show that maximisation ofgenetic diversity (minimisation of coancestryor kinship) is equivalent to maximisation ofeffective population size, as in undividedpopulations, and derive a generalisation ofprevious equations for the prediction ofeffective size. Finally, we discuss thestrategies for conservation in the light of thetheory.  相似文献   

8.
Genetic relationships between 61 dog breeds were investigated, using a sampling of 1514 animals and a panel of 21 microsatellite markers. Based on the results from distance-based and Bayesian methods, breed constituted the main genetic structure, while groups including genetically close breeds showed a very weak structure. Depending on the method used, between 85.7% and 98.3% of dogs could be assigned to their breed, with large variations according to the breed. However, breed heterozygosity influenced assignment results differently according to the method used. Within-breed and between-breed diversity variations when breeds were removed were highly negatively correlated ( r  = −0.963, P  <   0.0001), because of the genetic structure of the breed set.  相似文献   

9.
10.

Background

Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed.

Methods

46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA) were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity.

Results

Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95). With breed information, 30 cows and three bulls were identified (q > 0.95) that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10) relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P < 0.001). The four Algarvia bulls had Y-haplotypes H6Y2 and H11Y2, common in Portuguese cattle. The mtDNA composition showed prevalence of T3 matrilines and presence of the African-derived T1a haplogroup. This analysis confirmed the genetic proximity of Algarvia and Garvonesa breeds (Fst = 0.028, P > 0.05). Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50) to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity.

Conclusions

Molecular analyses complemented previous morphological findings to identify 33 animals that can be considered remnants of the Algarvia breed. Results of genetic diversity and conservation analyses provide objective information to establish a management program to reconstitute the Algarvia breed.  相似文献   

11.
The present study aims to understand the existing genetic diversity and structure of six native cattle breeds (Rathi, Tharparkar, Nagori, Mewati, Gir, and Kankrej) adapted to the north-western arid and semi-arid region of India based on microsatellite loci. Various diversity estimates, mean number of alleles (12.84); effective number of alleles (5.02); gene diversity (0.769), and observed heterozygosity (0.667) reflected the existence of substantial within-breed diversity in all the investigated cattle breeds. Mean estimates of F-statistics: F(IT) = 0.144 ± 0.023, F(IS) = 0.071 ± 0.021, and F(ST) = 0.078 ± 0.014 were significantly different from zero (P < 0.05). The interbreed relationships indicated moderate level of breed differentiation between the six cattle breeds with least differentiation between Kankrej-Mewati pair. The phylogeny structuring further supported close grouping of Kankrej and Mewati breeds. Correspondence analysis plotted Rathi, Tharparkar, and Gir individuals into three separate areas of multivariate space; whereas, Kankrej, Mewati, and Nagori cattle showed low breed specific clustering. This reflected the existence of discrete genetic structure for Tharparkar, Rathi, and Gir, the prominent dairy breeds of the region; whereas, admixture was observed for Kankrej, Mewati, and Nagori individuals.  相似文献   

12.
Marker-assisted conservation of European cattle breeds: An evaluation   总被引:1,自引:0,他引:1  
Two methods have been developed for the assessment of conservation priorities on the basis of molecular markers. According to the Weitzman approach, contributions to genetic diversity are derived from genetic distances between populations. Alternatively, diversity within and across populations is optimized by minimizing marker-estimated kinships. We have applied, for the first time, both methods to a comprehensive data set of 69 European cattle breeds, including all cosmopolitan breeds and several local breeds, for which genotypes of 30 microsatellite markers in 25–50 animals per breed have been obtained. Both methods were used to calculate the gain in diversity if a breed was added to a set of nine non-endangered breeds. Weitzman-derived diversities were confounded by genetic drift in isolated populations, which dominates the genetic distances but does not necessarily increase the conservation value of a breed. Marker-estimated kinships across populations were less disturbed by genetic drift than the Weitzman diversities and assigned high conservation values to Mediterranean breeds, which indeed have genetic histories that differ from the non-endangered breeds. Prospects and limitations of marker-assisted decisions on conservation priorities are discussed.  相似文献   

13.
In the Western Pyrenees, three out of four native cattle breeds are in grave danger of extinction. Genetic variation of all four breeds was assessed by analyzing 478 animals using 11 microsatellite markers. A moderate/high within-breed variability was found, a favorable factor to consider when planning conservation and improvement programs. Interestingly, the only selected commercial breed, the Pirenaica, showed depressed heterozygosity levels and a low average number of alleles, perhaps explainable by intensive human selection exacerbated by a bottleneck effect. The Pirenaica also exhibited pronounced genetic differences and was the largest contributor of diversity among the breeds from the Western Pyrenees. Among endangered cattle breeds from this region, our results highlight the singularity of the Betizu. Geographic isolation among herds may be responsible for the large F(IS) value found in the Betizu breed. Lastly, our study suggests that the use of highly selected breeds may be one of the causes of distortion in phylogenetic analyses.  相似文献   

14.
Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of HE found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.  相似文献   

15.
The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles), whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%.  相似文献   

16.

Background

Dog breeds lose genetic diversity because of high selection pressure. Breeding policies aim to minimize kinship and therefore maintain genetic diversity. However, policies like mean kinship and optimal contributions, might be impractical. Cluster analysis of kinship can elucidate the population structure, since this method divides the population in clusters of related individuals. Kinship-based analyses have been carried out on the entire Icelandic Sheepdog population, a sheep-herding breed.

Results

Analyses showed that despite increasing population size and deliberately transferring dogs, considerable genetic diversity has been lost. When cluster analysis was based on kinships calculated seven generation backwards, as performed in previous studies, results differ markedly from those based on calculations going back to the founder-population, and thus invalidate recommendations based on previous research. When calculated back to the founder-population, kinship-based clustering reveals the distribution of genetic diversity, similarly to strategies using mean kinship.

Conclusion

Although the base population consisted of 36 Icelandic Sheepdog founders, the current diversity is equivalent to that of only 2.2 equally contributing founders with no loss of founder alleles in descendants. The maximum attainable diversity is 4.7, unlikely achievable in a non-supervised breeding population like the Icelandic Sheepdog. Cluster analysis of kinship coefficients can provide a supporting tool to assess the distribution of available genetic diversity for captive population management.  相似文献   

17.
Pakistani camels have been classified socio-geographically into 20 breeds, but they have not yet been subjected to substantial selective pressures and the genetic basis for these breeds is not understood. However, it should be possible to distinguish them by use of molecular data. This study investigated the genetic diversity and population structure within and between two major Pakistani camel breeds, Marecha and Lassi. As no SNP array is currently available, we first identified 63 619 SNPs using a genotyping by sequencing approach. After quality control, a panel of 36 926 SNPs was used in the analysis. Population structure was investigated with a principal coordinate analysis as well as a cluster analysis using NetView , and multilocus heterozygosity analysis to explore between- and within-breed genetic variation. In addition, between-breed variation was explored using the fixation index, FST. We also compared relationship matrices computed using the VanRaden SNP-based method and a method developed specifically for genotyping by sequencing data. Among the two camel breeds, Lassi showed a lower level of genetic diversity whereas Marecha showed a higher level. As a genotyping platform has not yet been developed for the camel, the SNPs discovered in this study will be useful in future genetic studies in camels.  相似文献   

18.
Population contribution to genetic diversity can be estimated using neutral variation. However, population expansion or hybridization of diverged ancestries may weaken correlation between neutral and non-neutral variation. Microsatellite variation was studied at 25 loci in 20 native and 12 modern or imported northern European sheep breeds. Breed contributions to total gene diversity, allelic richness and mean allele-sharing distance between individuals were measured. Indications of changes in population size and admixtures of divergent ancestries were investigated and the extent of inbreeding was estimated. The northern European sheep demonstrated signs of reduction in effective population size. Many old, small populations made a substantial positive contribution to total molecular variation, but populations with several divergent major ancestries did not contribute substantially to molecular variation, with the exception of the Norwegian Rygja sheep. However, several diverged major ancestries may cause it to contribute less to non-neutral variation than expected from the microsatellite data. Breed uniqueness and within-breed variability generally had opposite effects on breed contributions to molecular diversity. The degree of inbreeding did not reflect the breed contribution to total gene diversity or allelic richness, but inbred populations increased the mean allele-sharing distance between individuals. Our study indicates breed conservation to be especially important in maintaining allelic variation in northern European sheep and supports the evolutionary importance of peripheral populations.  相似文献   

19.
20.
Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号