首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeWe compare image quality parameters derived from phantom images taken on three commercially available radiotherapy CT simulators. To make an unbiased evaluation, we assured images were obtained with the same surface dose measured using XR-QA2 model GafChromic™ film placed at the imaging phantom surface for all three CT-simulators.MethodsRadiotherapy CT simulators GE LS 16, Philips Brilliance Big Bore, and Toshiba Aquilion LB were compared in terms of spatial resolution, low contrast detectability, image uniformity, and contrast to noise ratio using CATPHAN-504 phantom, scanned with Head and Pelvis protocols. Dose was measured at phantom surface, with CT scans repeated until doses on all scanners were within 2%.ResultsIn terms of spatial resolution, the GE simulator appears slightly better, while Philips CT images are superior in terms of SNR for both scanning protocols. The CNR results show that Philips CT images appear to be better, except for high Z material, while Toshiba appears to fit in between the two simulators.ConclusionsWhile the image quality parameters for three RT CT simulators show comparable results, the scanner bore size is of vital importance in various radiotherapy applications. Since the image quality is a function of a large number of confounding parameters, any loss in image quality due to scanner bore size could be compensated by the appropriate choice of scanning parameters, including the exposure and by balancing between the additional imaging dose to the patient and high image quality required in highly conformal RT techniques.  相似文献   

2.
Objectives: The accuracy of cone-beam technique, cone-beam computed tomography (CBCT), compared with that of the multislice spiral CT (MSCT), for image-based linear measurements of midpalatal suture was assessed.

Material and Methods: Two measurements were performed by one investigator on the dry skull by using one digital caliper and in the axial cuts by using software. A 2D object-based image registration process was applied to determine the best affine transformation that maps a 2D input image (CBCT) in a reference image (MSCT).

Results: The value of the intraclass correlation coefficient was approximately 0.9%. The results suggest that differences between two scanners did not exist (observation 1, p = 0.964 and observation 2, p = 0.795). With regard to the dry skull and the image, the significance probabilities equaled zero (observation 1, p = 0.002 and observation 2, p = 0.004), therefore, indicating significant differences.

Conclusion: Measurements acquired in the images were similar and these findings contribute to stimulate the use of CBCT for evaluation of the maxillary expansion procedure.  相似文献   

3.
PurposeThis work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques.MethodsPETSTEP was implemented within Matlab as open source software. It allows generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images.ResultsPETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods.ConclusionsPETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods.  相似文献   

4.
PurposeThe quantitative assessment of Positron Emission Tomography (PET) scans using standardized uptake value and derived parameters proved to be superior to traditional qualitative assessment in several retrospective or mono-centric prospective reports. Since different scanners give different quantitative readings, a program for clinical trial qualification (CTQ) is mandatory to guarantee a reliable and reproducible use of quantitative PET in prospective multi-centre clinical trials and in every-day clinical life.MethodsWe set up, under the auspices of Italian Foundation on Lymphoma (FIL), a CTQ program consisting of the PET/CT scan acquisition and analysis of 18F and 68Ge NEMA/IEC image quality phantoms for the reduction of inter-scanner variability. Variability was estimated on background activity concentration (BAC) and sphere to background ratio (SBR).ResultsThe use of a 68Ge phantom allowed reducing the inter-scanner variability among different scanners from 74.0% to 20.5% in BAC and from 63.3% to 17.4% in SBR compared to using the 18F phantom. The CTQ criteria were fulfilled at first round in 100% and 28% of PET scanners with 68Ge and 18F respectively.ConclusionsThe 68Ge phantom proved a reliable tool for PET scanner qualification, able to significantly reduce the potential sources of error while increasing the reproducibility of PET derived quantitative parameter measurement.  相似文献   

5.
PurposeThe high energy emissions of 123I and the suboptimal radius of rotation affect the semiquantitative measurements performed during 123I-FP-CIT tomographic imaging. An in-house extra low cost striatum phantom with brain and striatum compartments was constructed and was used to study the effects of Triple Energy Window scatter correction (TEW-SC) and radius of rotation on the Specific Binding Ratio (SBR) measurements.Materials and methodsThe phantom compartments were filled with radioactive 123I solutions with varying concentrations, in a series of experiments. Tomographic images were acquired at six different radii of rotation, with and without TEW-SC and the SBRs were calculated using appropriate regions of interest, as in clinical imaging.ResultsSBRs decreased with increasing radius of rotation in both non-SC and TEW-SC images, the decrease being more pronounced in the latter. The application of TEW-SC increases SBR values by 40% on average. A maximum %Recovery of 42.7% of the true SBR value was achieved in the non-SC images, which increased to 64.6% after TEW-SC. Appropriate correction factors (CF) were calculated in order to make the SBR values independent on the radius of rotation, which could be used to correct SBR values obtained from tomographic acquisitions with suboptimal radius of rotation.ConclusionThe use of appropriate CF can provide more consistent SBR values and a more meaningful comparison between SBRs calculated from images acquired at different radii of rotation.  相似文献   

6.
The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.1 Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.2 For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.3,4,5,6 In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine7 with a PC running commercial particle image velocimetry (PIV) software8 is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported.For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.)For a typical EPIV experiment, the frame rate is between 20-60 fps, depending on flow conditions, and 100-1000 B-mode images of the spatial distribution of the tracer particles in the flow are acquired. Once acquired, the B-mode ultrasound images are transmitted via an ethernet connection to the PC running the PIV commercial software. Using the PIV software, tracer particle displacement fields, D(x,y)[pixels], (where x and y denote horizontal and vertical spatial position in the ultrasound image, respectively) are acquired by applying cross correlation algorithms to successive ultrasound B-mode images.10 The velocity fields, u(x,y)[m/s], are determined from the displacements fields, knowing the time step between image pairs, ΔT[s], and the image magnification, M[meter/pixel], i.e., u(x,y) = MD(x,y)/ΔT. The time step between images ΔT = 1/fps + D(x,y)/B, where B[pixels/s] is the time it takes for the ultrasound probe to sweep across the image width. In the present study, M = 77[μm/pixel], fps = 49.5[1/s], and B = 25,047[pixels/s]. Once acquired, the velocity fields can be analyzed to compute flow quantities of interest.  相似文献   

7.
PurposeTo propose an MRI quality assurance procedure that can be used for routine controls and multi-centre comparison of different MR-scanners for quantitative diffusion-weighted imaging (DWI).Materials and methods44 MR-scanners with different field strengths (1 T, 1.5 T and 3 T) were included in the study. DWI acquisitions (b-value range 0–1000 s/mm2), with three different orthogonal diffusion gradient directions, were performed for each MR-scanner. All DWI acquisitions were performed by using a standard spherical plastic doped water phantom. Phantom solution ADC value and its dependence with temperature was measured using a DOSY sequence on a 600 MHz NMR spectrometer. Apparent diffusion coefficient (ADC) along each diffusion gradient direction and mean ADC were estimated, both at magnet isocentre and in six different position 50 mm away from isocentre, along positive and negative AP, RL and HF directions.ResultsA good agreement was found between the nominal and measured mean ADC at isocentre: more than 90% of mean ADC measurements were within 5% from the nominal value, and the highest deviation was 11.3%. Away from isocentre, the effect of the diffusion gradient direction on ADC estimation was larger than 5% in 47% of included scanners and a spatial non uniformity larger than 5% was reported in 13% of centres.ConclusionADC accuracy and spatial uniformity can vary appreciably depending on MR scanner model, sequence implementation (i.e. gradient diffusion direction) and hardware characteristics. The DWI quality assurance protocol proposed in this study can be employed in order to assess the accuracy and spatial uniformity of estimated ADC values, in single- as well as multi-centre studies.  相似文献   

8.
The goal of the current study was to investigate the fidelity of a 2D ultrasound elastography method for the measurement of tendon motion and strain. Ultrasound phantoms and ex vivo porcine flexor tendons were cyclically stretched to 4% strain while cine ultrasound radiofrequency (RF) data and video data were simultaneously collected. 2D ultrasound elastography was used to estimate tissue motion and strain from RF data, and surface tissue motion and strain were separately estimated using digital image correlation (DIC). There were strong correlations (R2>0.97) between DIC and RF measurements of phantom displacement and strain, and good agreement in estimates of peak phantom strain (DIC: 3.5±0.2%; RF: 3.7±0.1%). For tendon, elastographic estimates of displacement profiles also correlated well with DIC measurements (R2>0.92), and exhibited similar estimated peak tendon strain (DIC: 2.6±1.4%; RF: 2.2±1.3%). Elastographic tracking with B-Mode images tended to under-predict peak strain for both the phantom and tendon. This study demonstrates the capacity to use quantitative elastographic techniques to measure tendon displacement and strain within an ultrasound image window. The approach may be extendible to in vivo use on humans, which would allow for the non-invasive analysis of tendon deformation in both normal and pathological states.  相似文献   

9.
PurposeThe aim of this study is to introduce a novel DWI-MRI phantom and to compare Apparent Diffusion Coefficient (ADC) measurements, utilizing EPI-DWI and HASTE-DWI sequences and two different fitting algorithms.Materials and Methods23 test tubes with different sucrose concentrations and polyacrylamide gels were used as a phantom for ADC measurements. The phantom was scanned on a clinical MRI system (1.5 T) over a two-month period utilizing an EPI-DWI and a HASTE-DWI sequence. ADC maps were calculated using a Weighted Linear (WL) and a Non Linear (NL) fitting algorithm. Measurements were performed with two sequences and two fitting algorithms. Geometric Distortions (GD), Ghosting Ratios (GR) and Signal to Structured Noise Ratios (SSNRs) were estimated using both sequences from the resultant ADC parametric maps.ResultsPolyacrylamide gels reveal lower coefficient of variation (CV%) as compared to sucrose solutions. ADC measurements performed with WL and NL algorithms reveal identical results with both sequences. WL and NL algorithms require approx. 3 s and 7 min respectively, for a single slice. EPI-DWI reveals a mean percent ADC value difference of (+4.5%) as compared to HASTE-DWI, regardless the type of fitting algorithm.ConclusionPolyacrylamide gels can serve as a better means for simulating ADC values, compared with sucrose solutions used in this study. WL can be proposed as the method for ADC measurements in daily clinical practice. WL is significantly faster than NL fitting method and equally precise. SSNR measured directly on ADC maps is an excellent means for testing the precision of ADC measurements.  相似文献   

10.
PurposeTo develop methods for qualitative and quantitative evaluation of MRI artifacts near metallic prostheses, and to compare the efficiency of different artifact suppression techniques with different types of hip prostheses.MethodsThree hip prostheses of cobalt-chromium, stainless steel, and titanium were embedded in agarose gel together with a rectilinear grid. Coronal MR images of the prostheses were acquired on a 1.5T scanner. Three pulse sequences were evaluated; TSE: a high-bandwidth turbo spin echo; VAT: TSE with view angle tilting, SEMAC: TSE with both VAT and slice distortion correction (6, 10 or 16 z-phase-encoding steps). Through-plane distortions were assessed as the length of visible gridlines, in-plane artifacts as the artifact area, and total artifacts by subtraction of an ideal, undistorted image from the actual image.ResultsVAT reduced in-plane artifacts by up to 50% compared to TSE, but did not reduce through-plane artifacts. SEMAC reduced through-plane artifacts by 60–80% compared to TSE and VAT. SEMAC in-plane artifacts were from 20% higher (6 encoding steps) to 50% lower (16 steps) than VAT. Total artifacts were reduced by 60–80% in the best sequence (SEMAC, 16 steps) compared to the worst (TSE). The titanium prosthesis produced 3–4 times lower artifact scores than the other prostheses.ConclusionsA rectilinear grid phantom is useful for qualitative and quantitative evaluation of artifacts provoked by different MRI protocols and prosthesis models. VAT and SEMAC were superior to TSE with high bandwidth. A proper number of z-encoding steps in SEMAC was critical. The titanium prosthesis caused least artifacts.  相似文献   

11.

Purpose

A novel phantom for image quality testing for functional magnetic resonance imaging (fMRI) scans is described.

Methods

The cylindrical, rotatable, ~4.5L phantom, with eight wedge-shaped compartments, is used to simulate rest and activated states. The compartments contain NiCl2 doped agar gel with alternating concentrations of agar (1.4%, 1.6%) to produce T1 and T2 values approximating brain grey matter. The Jacard index was used to compare the image distortions for echo planar imaging (EPI) and gradient recalled echo (GRE) scans. Contrast to noise ratio (CNR) was compared across the imaging volume for GRE and EPI.

Results

The mean T2 for the two agar concentrations were found to be 106.5±4.8, 94.5±4.7 ms, and T1 of 1500±40 and 1485±30 ms, respectively. The Jacard index for GRE was generally found to be higher than for EPI (0.95 versus 0.8). The CNR varied from 20 to 50 across the slices and echo times used for EPI scans, and from 20 to 40 across the slices for the GRE scans. The phantom provided a reproducible CNR over 25 days.

Conclusions

The phantom provides a quantifiable signal change over a head-size imaging volume with EPI and GRE sequences, which was used for image quality assessment.  相似文献   

12.
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.  相似文献   

13.
PurposeThe image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners.ResultsThe image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures.ConclusionDespite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.  相似文献   

14.
Purpose: To reduce image artifacts of proton computed tomography (pCT) from a preclinical scanner, for imaging of the relative stopping power (RSP) needed for particle therapy treatment planning using a simple empirical artifact correction method.Methods: We adapted and employed a correction method previously used for beam-hardening correction in x-ray CT which makes use of a single scan of a custom-built homogeneous phantom with known RSP. Exploiting the linearity of the filtered backprojection operation, a function was found which corrects water-equivalent path lengths (RSP line integrals) in experimental scans using a prototype pCT scanner. The correction function was applied to projection values of subsequent scans of a homogeneous water phantom, a sensitometric phantom with various inserts and an anthropomorphic head phantom. Data were acquired at two different incident proton energies to test the robustness of the method.Results: Inaccuracies in the detection process caused an offset and known ring artifacts in the water phantom which were considerably reduced using the proposed method. The mean absolute percentage error (MAPE) of mean RSP values of all inserts of the sensitometric phantom and the water phantom was reduced from 0.87% to 0.44% and from 0.86% to 0.48% for the two incident energies respectively. In the head phantom a clear reduction of artifacts was observed.Conclusions: Image artifacts of experimental pCT scans with a prototype scanner could substantially be reduced both in homogeneous, heterogeneous and anthropomorphic phantoms. RSP accuracy was also improved.  相似文献   

15.
PurposeTo investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT).MethodsHelical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40–200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated.ResultsThe iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar.ConclusionVirtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT.  相似文献   

16.
PurposeTo determine the targeting accuracy of brain radiosurgery when planning procedures employing different MRI and MRI + CT combinations are adopted.Materials and methodA new phantom, the BrainTool, has been designed and realized to test image co-registration and targeting accuracy in a realistic anatomical situation. The phantom was created with a 3D printer and materials that mimic realistic brain MRI and CT contrast using a model extracted from a synthetic MRI study of a human brain. Eight markers distributed within the BrainTool provide for assessment of the accuracy of image registrations while two cavities that host an ionization chamber are used to perform targeting accuracy measurements with an iterative cross-scan method. Two procedures employing 1.5 T MRI-only or a combination of MRI (taken with 1.5 T or 3 T scanners) and CT to carry out Gamma Knife treatments were investigated. As distortions can impact targeting accuracy, MR images were preliminary evaluated to assess image deformation extent using GammaTool phantom.ResultsMR images taken with both scanners showed average and maximum distortion of 0.3 mm and 1 mm respectively. The marker distances in co-registered images resulted below 0.5 mm for both MRI scans. The targeting mismatches obtained were 0.8 mm, 1.0 mm and 1.2 mm for MRI-only and MRI + CT (1,5T and 3 T), respectively.ConclusionsProcedures using a combination of MR and CT images provide targeting accuracies comparable to those of MRI-only procedures. The BrainTool proved to be a suitable tool for carrying out co-registration and targeting accuracy of Gamma Knife brain radiosurgery treatments.  相似文献   

17.
This study evaluated a new body composition phantom and its use for quality control and cross-calibration of dual-energy X-ray absorptiometry (DXA) instruments for measurements of body composition. We imaged the variable composition phantom (Lunar, Madison, WI) on eight different DXA devices. Deviations of up to 7% fat were observed when we compared the percent fat values measured by the different devices with the nominal values provided by the manufacturer. Absolute precision error of percent fat measurements for the phantom ranged from 0.6 to 0.8%. The phantom's percent fat values were also compared with whole body composition measurements from 130 female and male volunteers. The phantom detected differences in percent fat values that were similar to those found by comparing in vivo measurements with values from different DXA scanner models from the same manufacturer. When comparing different models of scanners from different manufacturers, such as the Hologic QDR-4500 and the Lunar DPX-IQ, the phantom showed a different relationship than was seen for patients. Therefore, corrections or comparisons based on the phantom data alone would be incorrect. In conclusion, the Lunar variable composition phantom is capable of accurately measuring the fat calibration of DXA devices and may be suitable for cross-sectional cross-calibration between scanners from the same manufacturer; however, for comparison of DXA scanners from different manufacturers, in vivo cross-calibration is still the only accurate method. The phantom may be used in longitudinal quality control to verify an instrument's temporal stability.  相似文献   

18.
By using the CT images obtained by subtracting two CT images acquired under the same conditions and slice locations, we have devised a method for detecting streak artifacts in non-uniform regions and only radiological noise components in CT images. A chest phantom was scanned using 16- and 64-multidetector row helical CT scanners with various mAs values at 120 kVp. The upper lung slice image was employed as a target image for evaluating the streak artifacts and radiological noise. One hundred parallel line segments with a length of 80 pixels were placed on the subtracted CT image, and the largest CT value in each CT value profile was employed as a feature variable of the streak artifacts; these feature variables were analyzed with the extreme value theory (Gumbel distribution). To detect only the radiological noise, all CT values contained in the 100 line profile were plotted on normal probability paper and the standard deviation was estimated from the inclination of its fitted line for the CT value plots. The two detection methods devised in this study were able to evaluate the streak artifacts and radiological noise in the CT images with high accuracy.  相似文献   

19.
IntroductionDeep learning (DL) is used to classify, detect, and quantify gold nanoparticles (AuNPs) in a human-sized phantom with a clinical MDCT scanner.MethodsAuNPs were imaged at concentrations between 0.0274 and 200 mgAu/mL in a 33 cm phantom. 1 mm-thick CT image slices were acquired at 120 kVp with a CTDIvol of 23.6 mGy. A convolutional neural network (CNN) was trained on 544 images to classify 17 different tissue types and AuNP concentrations. A second set of 544 images was then used for testing.ResultsAuNPs were classified with 95% accuracy at 0.1095 mgAu/mL and 97% accuracy at 0.2189 mgAu/mL. Both these concentrations are lower than what humans can visually perceive (0.3–1.4 mgAu/mL). AuNP concentrations were also classified with 95% accuracy at 150 and 200 mgAu/mL. These high concentrations result in CT numbers that are at or above the 12-bit limit for CT’s dynamic range where extended Hounsfield scales are otherwise required for measuring differences in contrast.ConclusionsWe have shown that DL can be used to detect AuNPs at concentrations lower than what humans can visually perceive and can also quantify very high AuNP concentrations that exceed the typical 12-bit dynamic range of clinical MDCT scanners. This second finding is possible due to inhomogeneous AuNP distributions and characteristic streak artifacts. It may even be possible to extend this approach beyond AuNP imaging in CT for quantifying high density objects without extended Hounsfield scales.  相似文献   

20.
Rationale and objectivesDedicated breast CT and PET/CT scanners provide detailed 3D anatomical and functional imaging data sets and are currently being investigated for applications in breast cancer management such as diagnosis, monitoring response to therapy and radiation therapy planning. Our objective was to evaluate the performance of the diffeomorphic demons (DD) non-rigid image registration method to spatially align 3D serial (pre- and post-contrast) dedicated breast computed tomography (CT), and longitudinally-acquired dedicated 3D breast CT and positron emission tomography (PET)/CT images.MethodsThe algorithmic parameters of the DD method were optimized for the alignment of dedicated breast CT images using training data and fixed. The performance of the method for image alignment was quantitatively evaluated using three separate data sets; (1) serial breast CT pre- and post-contrast images of 20 women, (2) breast CT images of 20 women acquired before and after repositioning the subject on the scanner, and (3) dedicated breast PET/CT images of 7 women undergoing neo-adjuvant chemotherapy acquired pre-treatment and after 1 cycle of therapy.ResultsThe DD registration method outperformed no registration (p < 0.001) and conventional affine registration (p ≤ 0.002) for serial and longitudinal breast CT and PET/CT image alignment. In spite of the large size of the imaging data, the computational cost of the DD method was found to be reasonable (3–5 min).ConclusionsCo-registration of dedicated breast CT and PET/CT images can be performed rapidly and reliably using the DD method. This is the first study evaluating the DD registration method for the alignment of dedicated breast CT and PET/CT images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号