首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The ability of plants to produce nitric oxide (NO) is now well recognised. In plants, NO is involved in the control of organ development and in regulating some of their physiological functions. We have recently shown that pollen generates NO in a constitutive manner and have measured both intra- and extracellular production of this radical. Furthermore, we have shown that nitrite accumulates in the media surrounding the pollen and have suggested that the generation of these signaling molecules may be important for the normal interaction between the pollen grain and the stigma on which it alights. However, pollen grains inevitably come into contact with other tissues, including those of animals and it is likely that the NO produced will influence the behavior of the cells associated with these tissues. Such non-animal-derived, NO-mediated effects on mammalian cells may not be restricted to pollen and plant debris and fungal spore-derived NO may elicit similar effects.Key words: allergy, fungal spores, nitric oxide, nitrite, pollenNitric oxide (NO) has been recognised as a signaling molecule for 20+ years, but its roles in controlling cellular activity are far from fully understood. In plants, NO is involved in numerous biological processes1 including seed germination,2 floral development,3 the control of stomatal closure4 and root gravitropism5 and is also known to affect gene expression.6 Recently, we showed that pollen of Arabidopsis, Senecio and Tradescantia produces NO,7 and speculated that its role in this specific context is to help orchestrate early signaling events of the pollen-stigma interaction.7,8 We subsequently showed that NO generation by pollen is more widespread among angiosperms and not just restricted to the species that were first investigated.9 Obviously, this intracellular generation of NO could influence the internal biochemistry of the pollen grain and pollen tube. However, for it to impact on other tissues, such as the stigma, on which the pollen grains alight during pollination, the NO generated would have to be released into the extracellular matrix.To demonstrate that pollen grains do indeed release NO to their surroundings we employed a water soluble derivative of the fluorescent NO probe, diaminofluorescein (DAF), to show that the 525 nm emission of the surrounding solution increased with time and that this fluorescence could be removed by scavenging the NO released from the pollen with compounds such as 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Thus, it is quite conceivable that, in vivo, NO produced by pollen moves into the extracellular matrix where it exerts an influence on the activity of cells in the adjacent tissues. Interestingly, in vitro rehydration of the pollen (analagous to the regulated hydration of pollen on the stigma) was needed before NO evolution could be measured. Normally, some form of specific stimulation, such as that which occurs either during pathogenesis10 or which results from the increased hormone levels observed during stomatal closure,11 is required to initiate NO production by plant tissues. Thus, it is interesting here, that water appears to be the signaling cue to initiate constitutive NO release by the pollen.As a result of its free radical nature, NO is notoriously difficult to measure. As the chemistry involved in their reactivity has become better understood, doubts have been raised concerning the specificity of many of the fluorescent probes that have been used for its detection.12 Commonly the fluorescent NO probe, DAF, is used, but similar alternative probes such as diamino-rhodamine (DAR) have recently also been described.13 Here, Figure 1 shows the NO-dependent fluorescence of DAR4M-AM-infused Brassica napus pollen and the associated temporal increase in the fluorescence of the extracellular medium containing a cell impermeable form of the dye. Despite the use of these different dye-based probes, it has still proved important to use other approaches to detect pollen NO production to refute the possibility that similarly reactive free radicals other than NO are responsible for the increased fluorescence observed. We have, therefore, confirmed our fluorescence measurements using electron paramagnetic resonance (EPR) techniques9 which have also indicated the presence of NO. Thus, the use of both fluorescent probe and EPR approaches point to the generation and release of NO from the pollen of all the plant species studied.Open in a separate windowFigure 1The diamino-rhodamine dyes, DAR4M-AM (cell permeable) and DAR4M (cell impermeable), can be used to detect intra- and extracellular pollen-derived nitric oxide (NO) respectively. Aqueous suspensions of Brassica napus sp. pollen were incubated for 15 min at room temp in 10 µM DAR4M-AM either without (A) or with (B) 200 µM of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). In each case, after removal of the excess dye and resuspension of the pollen in 10% (v/v) glycerol, the accumulated DAR4M-AM fluorescence signals within the pollen grains were detected by spinning disc, laser scanning, confocal microscopy with excitation at 560 nm and emission detection at 575 nm. The extracellular accumulation with time of the NO-associated fluorescence signal of the dye, DAR4M, in the media was also followed spectrophotometrically (C). Using the same excitation and emission detection wavelengths, the fluorescence of aqueous suspensions of the pollen in 10 µM DAR4M either without (Ci) or with (Cii) 200 “M cPTIO was monitored over a 10 min. period at room temp. The output fluorescence signal with time is presented in relative units.An additional NO detection technique based on ozone chemiluminescence was also used to confirm the data obtained.9 Unlike the fluorescence and EPR approaches which measure the accumulated production of NO, this method detects the steady-state levels of NO at any given time. However, as these levels proved to be very low and not readily detectable by this approach, we altered the assay conditions so as to measure the nitrite that accumulated as a result of NO oxidation in the extracellular media. While the nitrite that accumulated in the media could have done so as a result of being directly excreted by the pollen, the results obtained were in accordance with the earlier observations that pollen evolves NO.9 Neither should nitrite be dismissed as a mere downstream by-product. Not only is it the substrate for the production of NO by enzymes such as nitrate reductase,14 it can also act as a cell signaling molecule in its own right15 effecting increased cGMP production, increases in different cytochrome P450 activities and the induction of specific gene expression.Having established that pollen produces NO and nitrite, the mechanisms underlying their generation and subsequent signaling require determination. In mammalian cells the production of NO by a family of nitric oxide synthase enzymes is well understood.16 However, attempts to find plant homologues have so far proved unsuccessful, with the sole proposed candidate17 having now been shown to be a G protein.1820 Nitrate reductase is clearly one source of NO in plants,11,14 but whether other enzymes exist which are similarly involved remains a matter for debate and discovery. Obviously, as plant NO synthesising enzymes are identified their function in the generation of NO and nitrite in pollen will need to be established.Originally,7 we suggested that pollen-derived NO is integral to the pollen-stigma interaction and this now needs to be determined. Nevertheless, the NO and nitrite released externally by pollen may also affect the cells of any moist tissues on which pollen grains land. Such cells may include, for example, those lining mammalian nasal passages. It is well established that NO helps orchestrate the activity of cells involved in human immune responses16 and this begs the question as to whether or not pollen-produced NO alters these responses during, for example, the onset of the symptoms of hayfever? Many plant cells produce NO, particular during stress and after wounding21 and damaged plant tissues that come into contact with human cells in environments that create such debris also have the potential to elicit similar responses. The reaction of mammalian cells to fungi, which are known to possess NOS enzymes22 and whose spores are a main contributor to asthma,23 may also be similarly mediated.To conclude, pollen grains appear to generate both NO and nitrite constitutively. Determining the functional significance and ramifications of this production in terms of both endogenous and exogenous cell signaling is an important focus for future research.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号