首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

2.
Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOCTIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.Key words: actin, chloroplast, protein import, TOC complex, TIC complex, VIPP1Actin is a ubiquitous protein of eukaryotic cells and a major component of the cytoskeleton as microfilaments. In plant cells, plastids are closely associated with actin microfilaments.1,2 A direct interaction of plastids with the actin cytoskeleton has been postulated to anchor chloroplasts at appropriate intracellular positions,3 to support chloroplast light-intensitydependent movement,4 to facilitate plastid stromule (stroma-filled tubule) mobility5,6 and to participate in gravity perception.7 The known proteins implicated in plastid-actin interaction are CHUP1 (chloroplast unusual positioning 1), a protein exclusively targeted to the chloroplast outer envelope membrane that is essential for chloroplast anchorage to the plasma membrane,8 and myosin XI proteins that play a role in stromule movement9 and in gravitropism.10,11 Recently, we found that Toc159 also interacts with actin.12Toc159 is a component of the TOC complex, which is part of the chloroplast protein translocation apparatus. This apparatus consists of two membrane protein complexes that associate to allow translocation of nucleus-encoded proteins from the cytoplasm to the interior stromal compartment (reviewed in ref. 13). The translocon at the outer envelope membrane of chloroplasts (TOC complex) mediates the initial recognition of preproteins and their translocation across the outer membrane.14 The translocon at the inner envelope membrane of chloroplasts (TIC complex) physically associates with the TOC complex and provides the membrane translocation channel for the inner membrane. In addition, the TOC and TIC complexes interact with a set of molecular chaperones (ClpC and Hsp70), which assist the transfer of imported proteins1517 (Fig. 1).Open in a separate windowFigure 1Schematic diagram of Toc159-actin interactions and the import of photosynthesis proteins. Toc159, linked to actin by its A-domain, recruits a newly synthesized photosynthesis preprotein by its G-domain. Actin filaments facilitate Toc159 movement to the chloroplast outer envelope membrane for integration into the TOC complex. The core TOC complex is formed by Toc159, Toc34 and Toc75. Tic22 acts to facilitate the passage of preproteins across the intermembrane space and interacts with the TIC complex. The core TIC complex is composed of Tic110, Tic20 and/or Tic21, and Tic40. The Tic110 protein recruits stromal molecular chaperone ClpC. On arrival in the stroma, the transit peptide is cleaved by SPP, and other chaperones (Hsp90 or Hsp70) may assist in the folding. VIPP1 interacts with the chaperones and polymerises, inducing chloroplast inner envelope membrane budding, leading to thylakoid formation.The interaction between actin and Toc159 was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes, and confirmed with Toc159 expressed in Escherichia coli. In addition, many other components of the TOC-TIC protein import apparatus were co-immunoprecipitated by antibodies to actin and co-sedimented with added F-actin filaments.12 Using mass spectrometry, we identified the principal components of the TOC complex (Toc159, Toc75 and Toc34) and three accepted components of the TIC core complex (Tic110, Tic40 and ClpC). The presence of Tic20/21 and Tic22 could not be examined because they migrate in the same position on SDS-PAGE as the light chains of antibody molecules but, since they are involved in linking the TOC and TIC complexes,6 they may also be part of the complex with actin.The identification of the region of Toc159 that interacts with actin is an important feature to help establish whether any of the other Toc159 isoforms (such as Toc132 and Toc120) are likely to interact with actin. Toc159 family proteins are composed of three different domains: the A (acidic) domain, the G (GTPase) domain and the M (membrane) domain.18 The interaction of Toc159 with actin appears most likely to be through the A-domain; the G-domain did not co-sediment with actin filaments12 and the M-domain is embedded in the chloroplast envelope outer membrane and therefore is unlikely to be accessible to actin. Toc132 and Toc120 have shorter A-domains than Toc159 and this may affect their ability to bind actin. Although all the Toc159 isoforms are implicated in chloroplast protein import, Toc132 and Toc120 are involved in the import of chloroplast housekeeping proteins and Toc159 is specialized for the import of photosynthesis proteins.18 For import of photosynthesis proteins, two models have been proposed for preprotein recognition by the TOC complex: the ‘targeting model’ where the newly synthesized preprotein is first bound by a free cytosolic form of Toc159, and the ‘motor model’ where the transit peptide is first phosphorylated and then bound to Toc34 associated with the other TOC subunits in the outer envelope membrane.13 In support of the first model, Toc159 has been reported to exist in both cytosolic and membrane-bound forms19,20 and the soluble form of Toc159 is able to bind preproteins.20,21 Toc159 is proposed to be the major point of contact for preproteins during the early stages of protein import through its A-domain.22 The interaction of Toc159 with actin might provide a means to favor exchange between the putative soluble and membrane forms of Toc159 and potentially facilitate chloroplast photosynthesis protein import (Fig. 1).Several features of this model require additional experimental evidence. The involvement of a soluble form of Toc159 is highly controversial,13 and evidence for a physiological role in vivo is required. Experimental evidence for a facilitating role of the actin cytoskeleton in chloroplast protein import is also required. Does the presence of a basket of actin filaments surrounding the chloroplasts2 provide a means of concentrating cytosolic Toc159 in the vicinity of the chloroplasts? Or do actin filaments provide a trackway for movement of Toc159 to or from chloroplasts? Myosin, the motor protein for movement along actin filaments, was not detected in the co-immunoprecipitated complex, but this does not necessarily rule out its involvement.VIPP1 was also identified in the complex with actin. VIPP1 is involved in thylakoid membrane formation by vesicle formation from the chloroplast inner envelope membrane23 and the quantity of thylakoid membrane proteins is closely correlated to the amount of VIPP1 in chloroplasts.24 VIPP1 is also known to interact with Hsp70 and Hsp90 chaperones2527 and these chaperones may associate with the stromal face of the TIC complex to support protein folding.15 This raises the possibility that an actin-TOC-TIC-VIPP1 complex may facilitate thylakoid formation by channeling the import of thylakoid-located photosynthesis proteins through the chloroplast envelope membrane into vesicles directed to the thylakoid membrane (Fig. 1).Our study of actin-binding proteins in the chloroplast envelope membrane may have provided an initial glimpse at previously unrecognized mechanisms facilitating the import of photosynthesis proteins by chloroplasts. The formation of an actin-TOC-TIC-VIPP1 complex may provide a means of channeling cytosolic preproteins to the thylakoid membrane.  相似文献   

3.
Lens development and differentiation are intricate and complex processes characterized by distinct molecular and morphological changes. The growth of a transparent lens involves proliferation of the epithelial cells and their subsequent differentiation into secondary fiber cells. Prior to differentiation, epithelial cells at the lens equator exit from the cell cycle and elongate into long, ribbon-like cells. Fiber cell elongation takes place bidirectionally as fiber tips migrate both anteriorly and posteriorly along the apical surface of the epithelium and inner surface of the capsule, respectively. The differentiating fiber cells move inward from the periphery to the center of the lens on a continuous basis as the lens grows throughout life. Finally, when fiber cells reach the center or suture line, their basal and apical tips detach from the epithelium and capsule, respectively, and interlock with cells from the opposite direction of the lens and form the suture line. Further, symmetric packing of fiber cells and degradation of most of the cellular organelle during fiber cell terminal differentiation are crucial for lens transparency. These sequential events are presumed to depend on cytoskeletal dynamics and cell adhesive interactions; however, our knowledge of regulation of lens fiber cell cytosketal reorganization, cell adhesive interactions and mechanotransduction, and their role in lens morphogenesis and function is limited at present. Recent biochemical and molecular studies have targeted cytoskeletal signaling proteins, including Rho GTPases, Abl kinase interacting proteins, cell adhesion molecules, myosin II, Src kinase and phosphoinositide 3-kinase in the developing chicken and mouse lens and characterized components of the fiber cell basal membrane complex. These studies have begun to unravel the vital role of cytoskeletal proteins and their regulatory pathways in control of lens morphogenesis, fiber cell elongation, migration, differentiation, survival and mechanical properties.Key words: lens, fiber cells, elongation, migration, adhesion, Rho GTPasesLens morphogenesis involves a complex network of regulatory genes and interplay between growth factor, mitogenic, cell adhesive and cytoskeletal signaling pathways. The lens originates from surface ectoderm near the optic vesicle and lens vesicle that is formed via invagination of lens placode differentiates into primary fibers (the posterior half ) and epithelial cells (the anterior half ). These changes in embryonic cells control the lens distinctive anterior-posterior polarity. Subsequently, the lens grows through the proliferation of epithelial cells and the differentiation of their progeny into secondary fiber cells.1,2 The continuous addition of new fiber cells at the lens periphery leads to a gradual inward movement of older cells to the center of the lens. The ectodermal basement membrane that surrounds the lens vesicle thickens to form the lens capsule and is composed of mainly proteins of extracellular matrix.2,3 Since the lens does not shed cells, they are retained throughout the lens''s life and are packed symmetrically within the lens4 (Fig. 1).Open in a separate windowFigure 1Diagram of organization of lens epithelial and differentiating fiber cells. The lens is enclosed by a thick capsule consisting of various extracellular matrix proteins. Lens epithelial cells at the equator divide and exit from the cell cycle, and as they exit from the cell cycle, they start to elongate bidirectionally by making apical (AMC) and basal (BMC) membrane complexes with epithelium and capsule, respectively. As fiber cells elongate, they are pushed down and migrate toward the center. As the fiber cells migrate toward the center, both the basal and apical membrane complexes are expected to undergo changes in a regulated manner to control fiber cell adhesive, protrusive and contractile activity. Finally, when the fiber cells reach the center or suture line, their basal and apical ends detach from the epithelium and capsule, respectively and interlock with cells from the opposite direction of the lens and form suture. During fiber cell elongation and differentiation, cell adhesive interactions are reorganized extensively, and terminally differentiated fiber cells exhibit loss of cellular organelle and extensive membrane remodeling with unique ball and socket interdigitations. Arrows indicate the direction of fiber cell movement. This schematic is a modified version of Figure 2 from Lovicu and McAvoy.1Lens fiber cell elongation and differentiation is associated with a remarkable change in cell morphology, with the length of fiber cells increasing on the order of several hundredfold. These morphological changes are associated with extensive membrane and cortical cytoskeletal remodeling, actomyosin reorganization and cell adhesion turnover.517 Additionally, the tips of the elongating fiber cells at both the anterior and posterior terminals slide along the lens epithelium and capsule, respectively, as these cells migrate inward, and finally detach at the suture, where they form contacts with their counterparts from the opposite side of the lens.4,12 These cell movements are fundamental for maintaining distinct lens fiber cell polarity and are temporally and spatially regulated as the lens grows continuously throughout life.1,2,12 Another unique feature of the lens is that during fiber cell terminal differentiation, all the cellular organelles, including nuclei, endoplasmic reticulum and mitochondria, are degraded in a programmed manner.18 It has been well documented that lens epithelial cell elongation and differentiation is associated with reorganization of actin cytoskeleton, increased ratio of G-actin to F-actin, integrin switching, formation of N-cadherin linked cell adhesions, and expression of actin capping protein tropomodulin.5,6,9,10,13,15,17,1921 Importantly, disruption of actin cytoskeletal organization has been shown to impair lens epithelial differentiation and induce cataract formation, indicating the significance of actin cytoskeleton in lens differentiation and maintenance of lens optical quality.14,22 Further, during accommodation, lens shape is changed in a reversible manner. Therefore, the tensional homeostasis between actomyosin inside the fiber cell and fiber cell adhesion on the inner side of the lens capsule is considered to be crucial for accommodation.12In the developing mouse and chicken lens, the tips of the fiber cells (both apical and basal) have been reported to cluster with different cytoskeletal proteins, including actin, myosin II, actin capping protein tropomodulin, and N-cadherins.10,19,21 Similarly, adhesion regulating signaling molecules including integrins, focal adhesion kinase, Cdk5, abl kinase interacting protein (Abi-2), and Rho GTPases have been shown to localize to the fiber cell apical and basal tips.20,2326 Moreover, isolation and characterization of the fiber cell basal membrane complexes (BMCs) had revealed a symmetric organization of N-cadherin, myosin II, actin in association with myosin light chain kinase, focal adhesion kinase, β1 integrin and caldesmon.12 The signaling activity, tensional property and dynamics of BMCs are thought to control the coordinated migration of fiber cells along the lens capsule, formation of lens suture line, and lens accommodation.12 Additionally, the BMCs have been shown to undergo a characteristic regional rearrangement (including size and shape) during lens elongation and migration along the lens capsule.27 Therefore, impaired fiber cell migration on the lens capsule is expected to induce cataractogenesis.27 Taken together, these different observations convincingly indicate the importance of cytoskeleton and cell adhesion regulatory mechanisms in lens fiber cell elongation and migration.Although important insights have emerged regarding external cues controlling lens epithelial cell proliferation, elongation and differentiation, little is known regarding the specific signaling pathways that drive the processes culminating in fiber cell formation, migration, packing and maturation.1,7,28 For example, growth factors are known to play key roles in influencing cell fates during development. Some of the major growth factor families, including FGFs and TGFβ/BMPs, have been shown to be involved in the regulation of lens developmental processes and primary fiber cell differentiation via ERK kinase activation.1,28,29 However, the identity and role of signaling pathways acting downstream to growth factors regulating lens secondary fiber cell elongation, migration, adhesion, membrane remodeling and survival are poorly understood.1,12,21,30 In particular, regulatory mechanisms involved in cytoskeletal reorganization, tensional force and cell adhesive interactions during these cellular processes have yet be identified and characterized.7,9,12,21,3032Our laboratory has been working on a broad hypothesis that the actin cytoskeletal and cell adhesive signaling mechanisms composed of Rho GTPases (Rho, Rac and Cdc42) and their effector molecules play a critical role in controlling lens growth and differentiation, and in maintaining lens integrity.7 The Rho family of small GTPases regulates morphogenesis, polarity, migration and cell adhesion.33 These proteins bind GTP, exhibit GTPase activity, and cycle between an inactive GDP-bound form and an active GTP-bound form. This cycling is regulated by three groups of proteins: guanine-nucleotide exchange factors, which facilitate the exchange of GDP for GTP, thus rendering Rho GTPases active; GTPase-activating proteins, which regulate the inactivation of Rho by accelerating intrinsic GTPase activity and converting Rho GTPases back to their GDP-bound form; and GDP dissociation inhibitors (GDIs), which inhibit the dissociation of GDP bound to Rho GTPases.33,34 The GTP-bound form of the Rho GTPases interact with downstream effectors, which include protein kinases (e.g., ROCK and PAK), regulators of actin polymerization (e.g., N-WASP/WAVE, PI3-kinase and mDia), and other proteins with adaptor functions.33 The selective interaction of the different Rho GTPases with a variety of effectors determines the final outcome of their activation.33 For example, during cell movement, Rac and Cdc42 stimulate formation of protrusions at the leading edges of cells, and RhoA induces retraction at the tail ends of cells. This coordinated cytoskeletal reorganization permits cells to move toward a target.35 PI3-kinase and PI (3, 4, 5) P3 have also been widely implicated in controlling cell migration and polarity in a Rac GTPase-dependent manner.35 Members of the Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin homologous protein (WAVE) families serve to link Rho GTPases signals to the ARP2/3 complex, leading to actin polymerization that is crucial for the reorganization of the actin cytoskeleton at the leading edge for processes such as cell movement and protrusions.36 Importantly, all three Rho GTPases also regulate microtubule polymerization and assembly of adherens junctions to influence polarity and cell adhesion, respectively.33,37Likewise, a tensional balance between cell adhesion on the outside and myosin II-based contractility on the inside of the cells is regulated by Rho GTPases.38To explore the role of the Rho GTPases in lens morphogenesis and differentiation, we have targeted the lens Rho GTPases by overexpressing either the C3 exoenzyme (inactivator of RhoA and RhoB) or RhoGDIα (Rho GDP dissociation inhibitor) in a lens-specific manner in transgenic mice and followed their effects developmentally. These two transgenic mouse models exhibited ocular phenotype, including lens opacity (cataract) and microphthalmic eyes. Importantly, various histological, immunofluorescence and biochemical analyses performed in these developing transgenic mice have revealed defective lens morphogenesis, abnormal fiber cell migration, elongation, disrupted cytoskeletal organization and adhesive interactions, along with changes in proteins of the fiber cell gap junctions and water channels.32,39 These lenses have also shown decreased ERM (ezrin, radixin, moesin) protein phosphorylation,40 proteins that are involved in crosslinking of the plasma membrane with actin cytoskeleton,41 and increased apoptosis.32 Defective fiber cell migration has been found to be more notable in the Rho GDI overexpressing lenses than in the C3 exoenzyme expressing lenses (Fig. 2). The Rho GDI overexpressing lenses have shown a defective membrane localization of Rho, Rac and Cdc42 confirming their inactivation. These data, together with mechanistic studies performed using the lens epithelial cells and the noted effects on cell shape, actin polymerization, myosin phosphorylation and cell adhesive interactions, reveal the importance of Rho GTPase-dependent signaling pathways in processes underlying fiber cell migration, elongation, cytoskeletal and membrane organization and survival in the developing lens.7 Lens fiber cell BMC has been found to be localized intensely with Rac GTPase involved in cell migration (our unpublished work). Additionally, the Rho GDI transgenic lenses showed an impaired apical-apical cell-cell interactions between the fiber cells and epithelial cells.32 Moreover, the ruptured posterior capsule and disrupted suture lines in these lenses are indicative of defective BMC organization and activity.32Open in a separate windowFigure 2Abnormal lens phenotype in the neonatal Rho GDIα overexpressing transgenic mouse. Hematoxylin and eosin-stained sagittal sections of P1 RhoGDIα transgenic eyes reveal abnormal migration and morphology of the posterior lens fibers as compared with the symmetric organization of lens fibers and their migration toward the lens suture in the wild type mouse (reproduced with permission from Maddala et al.)32.Further support for involvement of Rho GTPases in lens fiber cell differentiation and survival has come from studies conducted with chick lens epithelial explants and cultured epithelial cells. Inactivation of Rho kinase or Rac activation by PI3 kinase in chick lens epithelial cells has been reported to induce fiber cell differentiation and survival in association with distinct cortical actin cytoskeletal reorganization, indicating the significance of Rho GTPases in lens fiber cell differentiation and survival.9,42 Additionally, lens fiber cell elongation and differentiation has been found to be associated with increased myosin light chain (MLC) phosphorylation, and inhibition of MLC phosphorylation regulated by MLC kinase and Rho kinase has induced lens opacity and disruption of cytoskeletal integrity, supporting the importance of myosin II activity in maintaining lens architecture and transparency.10 Importantly, various growth factors that regulate lens morphogenesis, fiber cell differentiation, and survival have been found to activate Rho and Rac GTPases and to induce MLC phosphorylation, actin cytoskeletal reorganization, and focal adhesion formation in lens epithelial cells.7,30 In addition to Rho GTPases, inhibition of Src kinase has been shown to induce fiber cell differentiation in association with actin cytoskeletal reorganization and cell adhesive interactions.43 Also, the expression and activation of focal adhesion kinase has been reported to increase in differentiating and migrating lens epithelial cells.44 Both these molecules are well recognized to regulate cell migration by participating in the disassembly of cell adhesions at the front of migrating cells.35Additional evidence for the participation of actin cytoskeletal organization and Rho GTPases in lens fiber cell migration and elongation has been derived from the studies of Abi-2 deficient mouse. Abl-interactor adaptor proteins Abi-1 and Abi-2 are linked to the Rac-WAVE-Arp2/3 signaling pathway and regulate actin polymerization and cell-cell adhesive interactions.45 Homozygous deletion of Abi-2 in mice has been shown to exhibit ocular phenotype including microphthalmia and lens opacity similar to the Rho GDI overexpressing transgenic mouse eyes noted in previous studies.23,32 In the absence of Abi-2, the secondary lens fiber orientation, migration and elongation were found to be defective, supporting the importance of Rac-WAVE-Arp2/3 signaling in lens fiber cell migration and cell adhesion.23 Abi-2 has been shown to localize intensely to the both basal and apical regions of the fiber cells and adherens junctions, and suppression of Abi-2 expression in epithelial cells resulted in impaired adherens junctions and downregulation of actin nucleation promoting factors.23 The significance of cytoskeletal signaling in lens has also been implicated in Lowe syndrome, a rare X-linked disorder characterized by congenital cataracts, results from mutations in the OCRL1 gene. The OCRL1 protein product (phosphatidylinositol 4, 5 bisphosphate 5-phosphatase) has been shown to participate in Rac GTPase regulated actin cytoskeletal organization, cell migration, and cell adhesion in various cell types.46 Finally, Wnt/PCP signaling via activation of Rho GTPases has been suggested to control lens morphogenesis, fiber cell migration and differentiation.26Importantly, given how the activity of the Rho GTPases is regulated by external cues and various effector proteins, a detailed understanding of the regulation of Rho GTPase signaling is necessary for a better appreciation of their role in lens morphogenesis, fiber cell elongation and differentiation, and tensional homeostasis. Further mechanistic studies are critical to unravel the specific role(s) of Rho GTPases and other cytoskeletal regulatory mechanisms involved in regulating the formation and disassembly of fiber cell basal and apical membrane complexes, fiber cell lateral membrane remodeling, and fiber cell-cell adhesive interactions during lens differentiation. Very little is known in terms of the assembly of different cell adhesive molecules at the apical-apical interface between the lens fibers and epithelial cells. We are only beginning to glimpse the regulatory networks involved in the regulation of fiber cell elongation, polarity, migration and adhesion. Many challenging questions remain: for example, how are the pathways regulating migration, basal and apical membrane complexes, and tensional homeostasis controlled by extracellular signals, and how are they integrated during fiber cell migration, suture formation, and packing? Novel insights into the molecular mechanisms regulating these cellular processes are expected to advance our understanding of lens morphogenesis, function and cataractogenesis.  相似文献   

4.
Filopodia are key structures within many cells that serve as sensors constantly probing the local environment. Although filopodia are involved in a number of different cellular processes, their function in migration is often analyzed with special focus on early processes of filopodia formation and the elucidation of filopodia molecular architecture. An increasing number of publications now describe the entire life cycle of filopodia, with analyses from the initial establishment of stable filopodium-substrate adhesion to their final integration into the approaching lamellipodium. We and others can now show the structural and functional dependence of lamellipodial focal adhesions as well as of force generation and transmission on filopodial focal complexes and filopodial actin bundles. These results were made possible by new high resolution imaging techniques as well as by recently developed elastomeric substrates and theoretical models. The data additionally provide strong evidence that formation of new filopodia depends on previously existing filopodia through a repetitive filopodial elongation of the stably adhered filopodial tips. In this commentary we therefore hypothesize a highly coordinated mechanism that regulates filopodia formation, adhesion, protein composition and force generation in a filopodia dependent step by step process.Key words: filopodia, focal adhesion, cell force, filopodial focal complex, actinCell protrusion depends on collaborative interactions of lamellipodia and filopodia.1 Although filopodia cannot drive cell migration alone, in contrast to lamellipodia, they are essential for many cell biological functions such as guidance of neuronal growth cones2 or during angiogenesis.3 Furthermore, filopodia are vital to cell-cell contact establishment as described for epithelial cells4 or during dorsal closure in Drosophila,5 and are also implicated in cancer cell metastasis.6,7 Lamellipodia as well as filopodia can be formed independently from each other,8 and recent results implicate independent basic mechanisms of cytoskeletal regulation for their formation. While lamellipodia protrusion is a well accepted Arp2/3-dependent process where actin branches constantly form the protrusive force at the leading edge of the lamella,9 the details of filopodia formation are far from being understood.1013 Although earlier experiments indicated Arp2/3 was also involved in filopodia formation,14 recent results point to a machinery that is far less dependent, or even possibly independent, of Arp2/3 with formins being the central regulating molecules instead.8As soon as filopodia start to form, they constantly sense their environment upon elongation. Transmembrane proteins such as cadherins or integrins15,16 connect filopodia to surrounding cells, extracellular matrix, or even pathogens to form stable contacts. When filopodial adhesion fails, retraction takes place.17 Although integrins and talin have been shown to be initially present at these sites in an un-clustered but active state, many additional adhesion proteins take part in filopodial focal complexes (filopodial FXs).16,18 Starting from a small VASP-containing adhesion spot at the tip of filopodia, proteins such as vinculin, paxillin, talin, tensin and even zyxin form an elongated filopodial FX behind the VASP spot along the filopodium. While integrin as well as VASP transport along the filopodia shaft via myosin-X has been described,19 it is still unclear whether additional adhesion proteins are also actively transported or whether diffusion takes place. Diffusion is typically a non-limiting process during cytoplasmic protein complex formation. However for filopodia, diffusion could have an important regulatory function as already hypothesized in theoretical models,20 because they are small in width and densely filled with actin filaments. Therefore, local concentrations of soluble adhesion molecules might drop within filopodia upon FX formation resulting in a pure physical regulation of filopodial length as well as filopodial FX size.The almost complete focal adhesion site specific protein inventory of filopodia FXs16,18 as indicated above provided further indications for a dependency of lamellipodial focal adhesions (FAs) on filopodial FXs. This hypothesis was confirmed using fluorescent live cell imaging to identify the transition of filopodial FXs into fully assembled FAs upon FX contact with the leading edge of the lamellipodium. While filopodial FXs were responsible for only a sub-fraction of FAs in fish fibroblasts,18 stable FAs of human keratinocytes were formed almost exclusively by enlargement of existing filopodial FXs16 (see scheme, Fig. 1).Open in a separate windowFigure 1Filopodia determine the fate of lamellipodial structures. Filopodia are formed by actin polymerization at their tip. Upon stable adhesion, a small but fully assembled filopodial focal complex (FX) is formed. This FX becomes enlarged in size upon lamellipodial contact to form focal adhesions. In parallel, the filopodial actin cross-linker fascin becomes exchanged by palladin and α-actinin as soon as the filopodial actin bundles are incorporated into the lamellipodium. In a next step, α-actinin becomes partially exchanged by myosin II, leading to enhanced force values applied at filopodial-originated FA sites bound to the substrate. The tight interaction between FAs and filopodial actin bundles reduces the actin retrograde flow within the filopodium in front of the FA (lower inlay) compared to filopodia lacking stable FAs in the lamellipodium (not shown). Adhesion sites formed in the lamellipodium lack connections to distinct actin bundles leading to low force application at these sites and short lifetimes (upper inlay).The structural dependency of lamellipodial complexes on filopodial protein aggregates could be also shown for actin bundles. Here, parallel oriented actin filaments become cross-linked by proteins such as fascin or IRSp53-Eps8-complex upon filopodia formation.21,22 These tightly packed bundles of 15–30 single actin filaments originate from the lamellipodial actin meshwork.23 Interestingly, filopodial actin bundles in turn also affect lamellipodial actin structures independent of whether the filopodium adheres in a stable manner or looses contact. Nemethova et al.18 described the contribution of non-adhering filopodia to the construction of concave bundles of actin filaments within the lamellipodium of fish fibroblasts. These bundles often extended in length and interconnected with adjacent bundles. Similar observations were found for fibroblasts of chicken embryos and neuronal growth cones.24,25 Here, filopodial actin bundles were clearly shown to be the origin of nearly 85% of all actin bundles found in the lamella. These actin filaments typically pointed towards the direction of migration. Additionally, myosin II was associated with these filopodial derived actin filaments to form polarized actin bundles. Of equal importance are findings presented by Schäfer et al. in this issue. The authors analyzed the fate of stably adhered filopodia and identified a stepwise exchange of filopodial fascin against the actin cross-linker proteins palladin and especially α-actinin in areas where filopodia were just overgrown by the lamellipodial leading edge (schematically presented in Fig. 1). α-Actinin further induced incorporation of myosin II into filopodial actin bundles in the lamellipodium. The authors additionally found that FAs displayed an enhanced lifetime when adhered to these myosin containing actin filaments. Therefore, these findings could also explain the unusual stability of filopodial actin filaments in neuronal growth cones observed by Mallavarapu and Mitchison.17 For keratinocytes, filopodia-dependent actin bundles are the only myosin containing actin structures oriented in the direction of movement within the lamellipodium and the lamella. Sensitivity and resolution improvements in cell force analyses further proved that these actin bundles were responsible for almost the entire force transmitted from the lamellipodium of migrating keratinocytes to the substrate. These forces were transferred at FA sites emerging from filopodial FXs, proving the importance of filopodia in lamellipodial structures and functions. Although filopodia-independent adhesion sites are also formed in keratinocytes right behind the leading edge, these sites are neither connected to detectable actin filament bundles nor do they transmit significant forces (see scheme, Fig. 1). Consequently, their sizes and life spans are strongly reduced (Schäfer et al., this issue).Recent results in keratinocytes additionally close the circle from stably adhered filopodia to the generation of new ones. Our original observations indicated that new filopodia were mainly formed in a direct extension of focal adhesions. Since these adhesion sites also depended on previously adhered filopodial FXs, a closer look revealed a consecutive outgrowth of the same filopodia.16 These cycles were only interrupted when outgrowing filopodia did not adhere in a stable manner between outgrowth cycles. Present results suggest that the same tip complex is present in all subsequently formed filopodia with a VASP tip signal remaining in place during successive filopodial elongations. As a result, well aligned, consecutive elongated focal adhesions can be found in keratinocytes. We can only speculate whether such an Arp2/3-independent mechanism describes a basic principle in filopodia formation at this point, but similar results have been observed for fish fibroblasts with a repetitive and alternating transition between filopodia and microspikes as filopodia-like structures barely extending over the lamellipodial leading edge.18The strong interdependency between lamellipodial FAs and stably adhered filopodia is also highlighted by actin retrograde flow analyses in keratinocytes (Schäfer et al. this issue). Retrograde actin flow is generated by actin polymerization at the cell front and myosin activity pulling the filaments rearwards. The interaction of actin with FAs is known to dampen flow rates in front of lamellipodial FAs.26 Furthermore, filamentous-actin dynamics measured in lung epithelial cells showed a fast retrograde actin flow at the leading edge compared to rates within the lamellae. The highest flow rates were in the range of 0.3–0.5 µm/min.27 Interestingly, keratocytes exhibited ten times slower flow rates at the leading edge,28 indicating that retrograde flow strongly depends on the cell type analyzed. Actin filaments polymerizing at the tips of filopodia also undergo retrograde flow, but these flow rates are much faster compared to those found in lamellipodia,24 as shown by bleaching experiments in chick embryo fibroblasts with flow rates approximately two-fold faster in filaments derived from filopodia compared to flow rates measured within the lamellipodium. These flow rates of approximately 1.3 µm/min were similar to those found for filopodia in other studies.22 Furthermore, we could show that this retrograde flow rate strongly depends on stable FAs formed behind the filopodium (Schäfer et al. this issue and Fig. 1). In the absence of these FAs, actin retrograde flow is doubled once more to rates of approximately 2.5 µm/min in filopodia. Therefore, although rates of FAs containing filopodia are still much higher than those found in lamellipodia, these rates are still slowed down indicating an effective connection between FAs and filopodial actin. These results further imply that myosin II incorporation into filopodial-originated actin bundles is responsible for enhanced retrograde flow rates in filopodia compared to rates found in the lamellipodium and that myosin II incorporation does not depend on stably adhered FAs directly behind filopodia. These data also strongly support the hypothesis that new filopodia form in front of stable lamellipodial FAs. It will be an intriguing question for future studies to analyze whether the reduced retrograde flow speeds in front of lamellipodial FAs might even be a prerequisite for efficient assembly and stable adhesion of small filopodial FXs, or perhaps even for filopodia formation in general.Taking into account all the currently known functions of filopodia, the presented results finally indicate that filopodia might be characterized best not only by one but actually two main functions. The first function is environmental sensing. Various transmembrane proteins can be involved leading to various roles for filopodia such as formation of cell-cell or cell-matrix interactions.5,15 Although these functions in environmental sensing seem to be highly diverse, force generation along filopodial-originated actin bundles as the second function for filopodia might be of universal importance independent of the cell type that forms them. Force transmission along cell-pathogen interacting filopodia have been observed,29 and the formation of adherens junctions after filopodia mediated cell-cell interaction is also a cell force dependent process.5 Therefore, these observations fit well to the currently presented data by Schäfer et al. (this issue) proving the importance of filopodia-dependent cell matrix interactions in cell force generation in the direction of migration (see scheme, Fig. 1).Present in almost every moving cell type, filopodia are therefore much more than just sensors for environmental conditions. In fact, these needle-like structures are the starting point for essential structures of adhesion and movement. Independent of whether they adhere stably or not, filopodia define the position of cellular adhesion sites, actin bundles, cell force generation and application, and, finally, the new filopodia to be formed.  相似文献   

5.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

6.
Cell motility is a highly coordinated multistep process. Uncovering the mechanism of myosin II (MYO2) activation responsible for the contractility underlying cell protrusion and retraction provides clues on how these complementary activities are coordinated. Several protein kinases have been shown to activate MYO2 by phosphorylating the associated myosin light chain (MLC). Recent work suggests that these MLC kinases are strategically localized to various cellular regions during cell migration in a polarized manner. This localization of the kinases together with their specificity in MLC phosphorylation, their distinct enzymatic properties and the distribution of the myosin isoforms generate the specific contractile activities that separately promote the cell protrusion or retraction essential for cell motility.Key words: myosin, MLCK, ROK, MRCK, phosphorylation, cell migrationCell movement is a fundamental activity underlying many important biological events ranging from embryological development to immunological responses in the adult. A typical cell movement cycle entails polarization, membrane protrusion, formation of new adhesions, cell body translocation and finally rear retraction.1 A precise temporal and spatial coordination of these separate steps that take place in different parts of the cell is important for rapid and efficient movement.2One major event during eukaryotic cell migration is the myosin II (MYO2)-mediated contraction that underlies cell protrusion, traction and retraction.1,3 An emerging theme from collective findings is that there are distinct myosin contractile modules responsible for the different functions which are separately regulated by local myosin regulatory light chain (MLC) kinases. These kinases contribute to contractile forces that connect adhesion, protrusion and actin organization.2 Unraveling the regulation of these contractile modules is therefore pivotal to a better understanding of the coordination mechanism.At the lamellipodium, the conventional calcium/calmodulin-dependent myosin light chain kinase (MLCK) has been shown to play an essential role in a Rac-dependent lamellipodial extension.4 Inhibition of calmodulin or MLCK activity by specific photoactivatable peptides in motile eosinophils effectively blocks lamellipodia extension and net movement.5 Furthermore, there is a strong correlation between activated MLCK and phosphorylated MLC within the lamellipodia of Ptk-2 cells as revealed by fluorescence resonance energy transfer (FRET) analysis.6 More recent studies showed MLCK to regulate the formation of focal complexes during lamellipodia extension.7,8 Functionally, MLCK is thought to play a critical role in the environment-sensing mechanism that serves to guide membrane protrusion. It mediates contraction that exerts tension on integrin-extracellular matrix (ECM) interaction, which, depending on the rigidity of the substratum, will lead to either stabilization of adhesion resulting in protrusion or destabilization of attachment seen as membrane ruffling on non-permissive surfaces.8,9As a Rho effector, Rho-associated kinase (ROK/ROCK/Rho-kinase) has been shown to regulate stress fibers and focal adhesion formation by activating myosin, an effect that can be blocked by the specific ROK inhibitor Y-27632.10,11 Myosin activation by ROK is the effect of two phosphorylation events: the direct phosphorylation on MLC and the inhibition of myosin phosphatase through phosphorylation of its associated myosin-binding subunit (MBS).11 Consistent with this notion of a localization-function relationship, ROK and MBS, which can interact simultaneously with activated RhoA,11 have been shown to colocalize on stress fibers.12,13 In migrating cells, Rho and ROK activities have been mostly associated with the regulation of tail retraction, as inhibition of their activities often results in trailing tails due to the loss of contractility specifically confined to the cell rear.14,15 Tail retraction requires high contractile forces to overcome the strong integrin-mediated adhesion established at the rear end, an event which coincides with the strategic accumulation of highly stable and contractile stress fibers that assemble at the posterior region of migrating cells.MRCK was previously shown to phosphorylate MLC and promote Cdc42-mediated cell protrusion.16 More recently, it was found to colocalize extensively with and regulate the dynamics of a specific actomyosin network located in the lamella and cell center, in a Cdc42-dependent manner but independent of MLCK and ROK.17 The lamellar actomyosin network physically overlaps with, but is biochemically distinct from the lamellipodial actin meshwork.9,18 The former network consists of an array of filaments assembled in an arrangement parallel to the leading edge, undergoing continuous retrograde flow across the lamella, with their disassembly occurring at the border of the cell body zone sitting in a deeper region.1719 Retrograde flow of the lamellar network plays a significant role in cell migration as it is responsible for generating contractile forces that support sustained membrane protrusion and cell body advancement.1719It is therefore conceivable that these three known MLC kinases are regulated by different signaling mechanisms at different locations and on different actomyosin contractile modules. The coordination of the various modules will ensure persistent directional migration (Figure 1). Phosphorylation of MLC by PAK and ZIP kinase has also been reported, but their exact roles in this event have yet to be determined.20,21 It is also noteworthy that individual kinases can work independently of each other, as amply shown by evidence from inhibitor treatments. This is particularly true for MRCK in the lamella, whose activity on lamellar actomyosin flow is not affected by ML7 and Y-27632, the inhibitors of MLCK and ROK respectively.17 These findings further indicate that although both ROK and MRCK have been shown to upregulate phosphorylated MLC levels by inhibiting the myosins phosphatases,11,22 they are likely to act as genuine MLC kinases themselves, without the need of MLCK as previously suggested.11Open in a separate windowFigure 1Upper panel depicts a model for the specific activation of the different MLC kinases at various locations in the cell. In response to upstream signals, MLC kinases MLCK, MRCK and ROK are activated and localized to different regions. In the case of MRCK and ROK, the interaction of the GTP-bound Rho GTPase binding domain will determine the specific action of the downstream kinase, resulting in actomyosin contractility at different locations. The coordination of these signalling events is crucial for directional cell migration. Lower panel shows a typical front-rear location for Myosin 2A and 2B in a migrating U2OS cell.In conjunction with their differences in localization, the three MLC kinases show apparent individual preferences and specificity towards the MYO2 isoforms that they associate with. The two major MYO2 isoforms MYO2A and 2B are known to have distinct intracellular distributions that are linked to their individual functions (Figure 1).23,24 In motile cells, MYO2A localization that is skewed towards the protruding cell front is consistent with it being the major myosin 2 component of the lamellar filaments regulated by MRCK as well as its regulation by MLCK in lamellipodial contraction.8,17,19 In contrast, the enrichment of MYO2B at retracting cell rear conforms well with the requirement of thick and stable stress fibers capable of causing tail contraction and prevention of protrusion under the control of Rho/ROK signaling.23,25 The selection for MYO2B filaments in the cell rear stems from their more contractile and stable nature compared with MYO2A, a consequence of their higher time-averaged association with actin.26,27 Conversely, the lower tension property of MYO2A filaments suggests that they are more dynamic in nature,26,27 a characteristic which fits well with the dynamic actomyosin activities at the leading edge and lamella that regulate protrusion.It deserves special mention that the three MLC kinases display subtle differences in their specificity towards MLC. While MLCK and MRCK phosphorylate only a single Ser19 site (monophosphorylation),18,28 ROK is able to act on both Thr18 and Ser19 residues causing diphosphorylation of MLC,29 MLCK only causes diphosphorylation when present at higher concentrations.30 By further increasing its actin-activated ATPase activity, diphosphorylation of MLC has been shown to induce a higher myosin activation and filament stability.3032 The use of specific antibodies that can differentiate between the two populations of phosphorylated MLC has been instrumental in revealing their localization and correlation with the activity of the MLC kinases. The emerging picture from these experiments is that mono and diphosphorylated MLC exhibit distinct distributions in migrating cells, with the monophosphorylated MLC localized more towards the protrusive region, while the diphosphorylated form is more enriched at the posterior end.21,33 Taking into account their biochemical properties, the polarized distributions of these differentially phosphorylated MLC coincide functionally with the segregation of the MYO2 isoforms and their corresponding regulators. These findings provide further support for the existence of segregated contractile modules in migrating cell and their distinctive regulation.The mechanisms that determine the specific segregation of the contractile modules and their regulation are unclear. However, some clues have emerged from recent studies. It has been shown that the C-terminal coiled-coil region of MYO2B is important for determining its localization in cell rear25 and which requires Rho/ROK activity as their inhibition resulted in the loss of this specific localization.23 Correspondingly, the inhibition of MRCK activity resulted in the loss of lamella-localized MYO2A.17 These findings suggest that activation of MYO2 filaments by their upstream regulators is important for their functional segregation and maintenance. It is noteworthy that both ROK and MRCK have distinct regulatory domains including the pleckstrin homology domains which have been shown to be essential for their localization, a process which may involve myosin interaction and lipid-dependent targeting as has been respectively shown for ROK and MRCK.11,13,16 Further, the specificity of MRCK for lamellar actomyosin is believed to be largely determined by the two proteins it forms a complex with: the adaptor LRAP35a, and the MYO2-related MYO18A. Activation of MYO18A by MRCK, a process bridged by LRAP35a, is a crucial step which facilitates MRCK regulation on lamellar MYO2A.17The mechanisms responsible for segregating the contractile modules and their regulators may also comprise a pathway that parallels the microtubule-modulatory Par6/aPKC/GSK3β signalling pathway which regulates cellular polarization. This notion is supported by both Cdc42 and Rho being common upstream regulators of these two pathways.34 GTPase activation may determine the localized activities of the separate contractile modules and create an actomyosin-based asymmetry across the cell body, which together with the microtubule-based activities, result in the formation of a front-back axis important for directional movement. The involvement of MRCK in MTOC reorientation and nuclear translocation events,35 and our unpublished observation that LRAP35a has a GSK3β-dependent microtubule stabilizing function are supportive of a possible cross-talk between these two pathways.In conclusion, the complex regulation of contractility in cell migration emphasizes the importance of the localization, specificity and enzymatic properties of the different MLC kinases and myosin isoforms involved. The initial excitement and confusion caused by the emergence of the different MLC kinases are fading, being now overtaken by the curiosity about how they cooperate and are coordinated while promoting cell motility.  相似文献   

7.
8.
The dynamic remodeling of actin filaments in guard cells functions in stomatal movement regulation. In our previous study, we found that the stochastic dynamics of guard cell actin filaments play a role in chloroplast movement during stomatal movement. In our present study, we further found that tubular actin filaments were present in tobacco guard cells that express GFP-mouse talin; approximately 2.3 tubular structures per cell with a diameter and height in the range of 1–3 µm and 3–5 µm, respectively. Most of the tubular structures were found to be localized in the cytoplasm near the inner walls of the guard cells. Moreover, the tubular actin filaments altered their localization slowly in the guard cells of static stoma, but showed obvious remodeling, such as breakdown and re-formation, in moving guard cells. Tubular actin filaments were further found to be colocalized with the chloroplasts in guard cells, but their roles in stomatal movement regulation requires further investigation.Key words: actin dynamics, tubular actin filaments, chloroplast, guard cell, stomatal movementStomatal movement responses to surrounding environment are mediated by guard cell signaling.1,2 Actin filaments within guard cells are dynamic cytoarchitectures and function in stomatal development and movement.3 Arrays of actin filaments in guard cells that are dependent on different stomatal apertures have also been reported in references 47. For example, the random or longitudinal orientations of actin filaments in closed stomata change to a radial orientation or ring-like array after stomata opening.5,6,8 The reorganization of the actin architecture during stomatal movement depends on the depolymerization and repolymerization of actin filaments in guard cells. In contrast to the traditional treadmill model of actin dynamic mechanisms, stochastic dynamics of actin have been revealed in plant cells, such as in the epidermal cells of hypocotyl and root, the pavement cells of Arabidopsis cotyledons, and the guard cells of tobacco (Nicotiana tabacum).911 In this alternative system, the short actin fragments generated from severed long filaments can link with each other to form longer filaments by end-joining activity. The actin regulatory proteins, Arp2/3 complex, capping protein and actin depolymerizing factor (ADF)/cofilin, may also be involved in the stochastic dynamics of actin filaments.12,13Using tobacco GFP-mouse talin expression lines, we have previously analyzed the stochastic dynamics of guard cell actin filaments and their roles in chloroplast displacement during stomatal movement.6,11 We found from these analyses that another arrangement of actin filaments, i.e., tubular actin filaments, exists in the guard cells of these tobacco lines. We first found the circle-like actin filaments in 82% of the guard cells (counting 320 cells) in tobacco expressing GFPmouse talin when analyzing a single optical section (Fig. 1A). In a previous study of BY-2 cells expressing GFP-Lifeact labeled actin filaments, Smertenko et al. found similar structures, i.e., quoit-like structures or acquosomes in all of the plant tissues examined except growing root hairs.10 However, in our present analysis of serial sections, we determined that the circle-like actin filaments in the tobacco guard cells were long tubes (Fig. 1A), as the lengths (about 3–5 µm) of these structures were greater than their diameter (about 1–3 µm). Hence, we denoted these structures as tubular actin filaments to distinguish them from the circular conformations of actin filaments observed previously in other plant cell tissues.10,1419 About 2.3 of these tubular actin filaments were found per guard cell, which is less than the number of acquosomes reported in BY-2 cells (about 6.7 per cell).10 Analysis of serial optical sections at the z-axis revealed that the tubular actin filaments localize in the cytoplasm near the inner walls of the guard cells (Fig. 1B), which is similar to the distribution of chloroplasts in guard cells.11 Longitudinal sections further revealed a colocalization of tubular actin filaments and chloroplasts (Fig. 1B).Open in a separate windowFigure 1Tubular actin filaments in the guard cells of a tobacco (Nicotiana tabacum) line expressing GFP-mouse talin. (A) Optical-sections (interval, 1.5 µm) of guard cells in a moving stoma showing tubular actin filaments (arrow heads). Frames (a1) and (a2) are cross sections of 1.5-µm-picture through the yellow and red lines, respectively, revealing the cross section of the circle structures are parallel lines (arrows). (B) Optical-sections of a stoma from the outer periclinal walls to the inner walls of the guard cells (interval, 1 µm). The tubular actin filaments (arrow heads) are localized in the cytoplasm near to the inner periclinal walls of guard cells. Frame (b1) is the guard cell on the right of the frame “4 µm”; (b2) is the cross section of b1 through the red line; and (b3) is a higher magnification image of the area encompassed by the white square in b2. Arrows indicate the colocalization between the tubular actin filaments and the chloroplast (indicated using a red pseudocolor). (C) Time-series imaging showing the movement of tubular actin filaments in the guard cells of static stomata. Frame (c1) comprises three images colored red (0 S), green (40 S) and blue (80 S), that are merged in a single frame to show the translocation of the tubular actin filaments (arrows). (D) Time-series images of the opening stomata showing the breakdown (arrows) and re-formation (arrowheads) of the tubular actin filaments. All images were captured using a Zeiss LSM 510 META confocal laser scanning microscope, as described by Wang et al.11 Bars, 10 µm.We performed time-lapse imaging and found that the translocation of tubular actin filaments is slow in static stomata in which the distance between two tubular actin filaments typically increased from 2.22 to 2.50 µm after 80 sec (Fig. 1C). In moving stomata, however, the tubular actin filaments showed an obvious dynamic reorganization whereby they could be processed into short fragments and also reemerged after they had disintegrated (Fig. 1D). These results indicate that tubular actin filaments have stochastic dynamics that are similar to the long actin filaments of guard cells.11 In our previous study, we found that the stochastic dynamics of actin filaments correlate with light-induced chloroplast movement in guard cells.11 However, whether the dynamics of the tubular actin filaments are also involved in chloroplast movement during stomatal movement remains to be investigated. In cultured mesophyll cells which had been mechanically isolated from Zinnia elegans, Wilsen et al. previously found a close association between fully closed actin rings and chloroplasts.18 These authors further found that the average percentage of cells with free actin rings increased at the initial culture stage, and then decreased, which indicates that the formation of actin rings might be a response of the actin cytoskeleton to cellular stress or disturbance.18 The turgor pressure of guard cells is the fundamental basis of stomatal movement leading to changes in the shape, volume, wall structure, and membrane surface of guard cells.2024 We speculate from our current data that there is a relationship between tubular actin filaments and the shape changes of guard cells during stomatal movement.  相似文献   

9.
Cell migration is an integrated process that involves cell adhesion, protrusion and contraction. We recently used CAS (Crk-associated substrate, 130CAS)-deficient mouse embryo fibroblasts (MEFs) to examined contribution made to v-Crk to that process via its interaction with Rac1. v-Crk, the oncogene product of avian sarcoma virus CT10, directly affects membrane ruffle formation and is associated with Rac1 activation, even in the absence of CAS, a major substrate for Crk. In CAS-deficient MEFs, cell spreading and lamellipodium dynamics are delayed; moreover, Rac activation is significantly reduced and it is no longer targeted to the membrane. However, expression of v-Crk by CAS-deficient MEFs increased cell spreading and active lamellipodium protrusion and retraction. v-Crk expression appears to induce Rac1 activation and its targeting to the membrane, which directly affects membrane dynamics and, in turn, cell migration. It thus appears that v-Crk/Rac1 signaling contributes to the regulation of membrane dynamics and cell migration, and that v-Crk is an effector molecule for Rac1 activation that regulates cell motility.Key words: v-Crk, Rac, lamellipodia dynamics, cell migration, p130CASCell migration is a central event in a wide array of biological and pathological processes, including embryonic development, inflammatory responses, angiogenesis, tissue repair and regeneration, cancer invasion and metastasis, osteoporosis and immune responses.1,2 Although the molecular basis of cell migration has been studied extensively, the underlying mechanisms are still not fully understood. It is known that cell migration is an integrated process that involves formation of cell adhesions and/or cell polarization, membrane protrusion in the direction of migration (e.g., filopodium formation and lamellipodium extension), cell body contraction and tail detachment.13 Formation of cell adhesions, including focal adhesions, fibrillar adhesions and podosomes are the first step in cell migration. Cell adhesions are stabilized by attachment to the extracellular matrix (ECM) mediated by integrin transmembrane receptors, which are also linked to various cytoplasmic proteins and the actin cytoskeleton, which provide the mechanical force necessary for migration.2,4 The next steps in the process of cell migration are filopodium formation and lamellipodium extension. These are accompanied by actin polymerization and microtubule dynamics, which also contribute to the control of cell adhesion and migration.5Focal adhesions are highly dynamic structures that form at sites of membrane contact with the ECM and involve the activities of several cellular proteins, including vinculin, focal adhesion kinase (FAK), Src family kinase, paxillin, CAS (Crk-associated substrate, p130CAS) and Crk.6 A deficiency in focal adhesion protein is associated with the severe defects in cell motility and results in embryonic death. For example, FAK deficiency disrupts mesoderm development in mice and delays cell migration in vitro,7 which reflects impaired assembly and disassembly the focal adhesions.8 In addition, mouse embryonic fibroblasts (MEFs) lacking Src kinase showed a reduced rate of cell spreading that resulted in embryonic death.9 Taken together, these findings strongly support the idea that cell adhesion complexes play crucial roles in cell migration.CAS is a hyperphosphorylated protein known to be a major component of focal adhesion complexes and to be involved in the transformation of cells expressing v-Src or v-Crk.10 CAS-deficient mouse embryos die in utero and show marked systematic congestion and growth retardation,4 while MEFs lacking CAS show severely impaired formation and bundling of actin stress fibers and delayed cell motility.4,11,12 Conversely, transient expression of CAS in COS7 cells increases cell migration.11 Crk-null mice also exhibit lethal defects in embryonic development,13 which is consistent with the fact that CAS is a major substrate for v-Crk, and both CAS and v-Crk are necessary for induction of cell migration.14 v-Crk consists of a viral gag sequence fused to cellular Crk sequences, which contain Src homology 2 (SH2) and SH3 domains but no kinase domain, and both CAS and paxillin bind to SH2 domains.12,15,16 Despite the absence of a kinase domain, cell expressing v-Crk show upregulation of tyrosine phosphorylation of CAS, FAK and paxillin, which is consistent with v-Crk functioning as an adaptor protein.17 Moreover, this upregulation of tyrosine phosphorylation correlates well with the transforming activity of v-Crk.17 By contrast, tyrosine phosphorylation of FAK and CAS is diminished in Src kinase-deficient cells expressing v-Crk, and they are not targeted to the membrane, suggesting v-Crk signaling is Src kinase-dependent. After formation of the CAS/v-Crk complex, v-Crk likely transduces cellular signaling to Src kinase and FAK.12 Notably, tyrosine phosphorylation of FAK and cell migration and spreading are all enhanced when v-Crk is introduced into CAS-deficient MEFs.12 We therefore suggest that v-Crk activity, but not cellular Crk activity, during cell migration and spreading is CAS-independent.Membrane dynamics such as lamellipodium protrusion and membrane ruffling reportedly involve Rac1,18 α4β1 integrin,19 Arp2/3,6 and N-WASP,20 and are enhanced in v-Crk-expressing CAS-deficient MEFs.21 Moreover, expression in those cells of N17Rac1, a dominant defective Rac1 mutant, abolished membrane dynamics at early times and delayed cell migration.21 v-Crk-expressing, CAS-deficient MEFs transfected with N17Rac1 did not begin spreading until one hour after being plated on fibronectin, and blocking Rac activity suppressed both membrane dynamics and cell migration. We therefore suggest that v-Crk is involved in cell attachment and spreading, and that this process is mediated by Rac1 activation. In addition, v-Crk expression apparently restores lamellipodium formation and ruffle retraction in CAS-deficient MEFs. Thus v-Crk appears to participate in a variety cellular signaling pathways leading to cell spreading, Rac1 activation, membrane ruffling and cell migration, even in the absence of CAS, its major substrate protein.In fibroblasts, the Rho family of small GTP-binding proteins (e.g., Cdc42, Rac and Rho) functions to control actin cytoskeleton turnover, including filopodium extension, lamellipodium formation and generation of actin stress fibers and focal adhesions.22 These GTPases function in a cascade, such that activation of Cdc42 leads to activation of Rac1, which in turn activates Rho.22 Once activated, Rho controls cell migration. Cell adhesion to ECM leads to the translocation of Rac1 and Cdc42 from the cytosol to the plasma membrane,23 where they regulate actin polymerization at the leading edge.19,24 Dominant negative Rac and Cdc42 mutants inhibit the signaling to cell spreading initiated by the interaction of integrin with ECM.24 The fact that cellular levels of activated Rac are higher in cells adhering to ECM than in suspended cells further suggests that activation of Rac and Cdc42 is a critical step leading to membrane protrusion and ruffle formation. It is noteworthy in this regard that v-Crk is able to induce Rac activation and its translocation to plasma membrane.21Overall, the findings summarized in this article demonstrate that v-Crk participates in several steps leading to cell adhesion and spreading (Fig. 1), and the targeting of v-Crk to focal adhesion sites appears to be a prerequisite for regulation of cell migration and spreading via Rac activation. To fully understand its function, however, it will be necessary to clarify the role of v-Crk in Rac1 and Cdc42 activation initiated by integrin-ECM interactions.Open in a separate windowFigure 1Schematic diagram of v-Crk signaling in MEFs. Cell adhesion signaling initiated by the integrin-ECM interaction triggers v-Crk signaling mediated by Src kinase, after which focal adhesion proteins are tyrosine phosphorylated. These events lead to translocation of Rac from the cytosol to the membrane, where it promotes membrane protrusion and ruffle formation. Under basal conditions, Rac is bound with GDP and is inactive. Upon stimulation, Rac activation is mediated by guanine nucleotide exchange factors (GEFs) that stimulate the release of bound GDP and the binding of GTP. Activation of Rac is transient, however, as it is inactivated by GTPase activating protein (GAP).  相似文献   

10.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

11.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.Key words: cell adhesion, membrane protein, integrin, platelet, transmembrane complex, transmembrane signalingThe communication of biological signals across the plasma membrane is fundamental to cellular function. The ubiquitous family of integrin adhesion receptors exhibits the unusual ability to convey signals bi-directionally (outside-in and inside-out signaling), thereby controlling cell adhesion, migration and differentiation.15 Integrins are Type I heterodimeric receptors that consist of large extracellular domains (>700 residues), single-pass transmembrane (TM) domains, and mostly short cytosolic tails (<70 residues). The activation state of heterodimeric integrins is correlated to the association state of the TM domains of their α and β subunits.610 TM dissociation initiated from the outside results in the transmittal of a signal into the cell, whereas dissociation originating on the inside results in activation of the integrin to bind ligands such as extracellular matrix proteins. The elucidation of the role of the TM domains in integrin-mediated adhesion and signaling has been the subject of extensive research efforts, perhaps commencing with the demonstration that the highly conserved GFFKR sequence motif of α subunits (Fig. 1), which closely follows the first charged residue on the intracellular face, αIIb(K989), constrains the receptor to a default low affinity state.11 Despite these efforts, an understanding of this sequence motif had not been reached until such time as the structure of the αIIb TM segment was determined.12 In combination with the structure of the β3 TM segment13 and available mutagenesis data,6,9,10,14,15 this has allowed the first correct prediction of the overall association of an integrin αβ TM complex.12 The predicted association was subsequently confirmed by the αIIbβ3 complex structure determined in phospholipid bicelles,16 as well as by the report of a similar structure based on molecular modeling using disulfide-based structural constraints.17 In addition to the structures of the dissociated and associated αβ TM domains, their membrane embedding was defined12,13,16,18,19 and it was experimentally recognized that, in the context of the native receptor, the TM complex is stabilized by the inactive, resting ectodomain.16 These advances in integrin membrane structural biology are complemented by the recent structures of a resting integrin ectodomain and an activating talin/β cytosolic tail complex that overlap with the αβ TM complex,20,21 allowing detailed insight into integrin bi-directional TM signaling.Open in a separate windowFigure 1Amino acid sequence of integrin αIIb and β3 transmembrane segments and flanking regions. Membrane-embedded residues12,13,16,18,19 are enclosed by a gray box. Residues 991–995 constitute the highly conserved GFFKR sequence motif of integrin α subunits.  相似文献   

12.
The process of epithelial lumenogenesis requires coordination of a network of signaling machinery communicated to each cell through subsequent cell divisions. Formation of a single hollow lumen has previously been shown to require Tuba, a Cdc42 GEF, for Cdc42 activation and correct spindle orientation. Using a Caco-2 model of lumenogenesis, we show that knockdown (KD) of the actin regulator N-WASP, causes a multilumen phenotype similar to Tuba KD. Defects in lumenogenesis in Tuba KD and N-WASP KD cells are observed at the two-cell stage with inappropriate marking of the pre-apical patch (PAP )—the precursor to lumen formation. Strikingly, both Tuba and N-WASP depend on each other for localization to the PAP. We conclude that N-WASP functions cooperatively with Tuba to facilitate lumenogenesis and this requires the polyproline region of N-WASP.Key words: lumen, N-WASP, tuba, E-cadherin, pre-apical patchMany epithelial tissues are organized as hollow tubes whose open lumina connect the body with its external environment.1,2 These tubes consist of a monolayer of polarized cells that envelope the central lumen. Lumen formation is thus a key process in epithelial morphogenesis that depends upon cell polarity to establish three cell surface domains: a basal surface adherent to the extracellular matrix, a lateral surface between cells, and an apical surface that is exposed to the luminal fluids. Of note, the apical membrane is biochemically and morphologically distinct from the baso-lateral surfaces and effectively defines the luminal surface.3,4For a lumen to form, cells must first mark the site at which apical membrane is to be inserted, something that is achieved at the first cell division.5 Targeted trafficking of apical membrane constituents defines a pre-apical patch (PAP), the precursor to the definitive lumen.5 Such insertion of apical membrane must presumably be coordinated with the assembly of apical junctions to segregate nascent apical from lateral membrane domains.2 Subsequent cell divisions direct apical membrane and protein constituents to this point of initial apical membrane placement.6 Coordinated luminal positioning enables the initial formation of a single hollow lumen that subsequently expands through polarized fluid secretion to separate apical membranes, such as occurs in the embryonic gastrointestinal tract,7 or by apoptosis or autophagy of the central cells as is observed in mammary gland development.8,9 Failure to establish initial luminal positioning causes defective lumenogenesis, often resulting in multiple, morphologically abnormal lumina.5,6Crucial to lumenal morphogenesis is then the mechanism(s) that mark the site where the PAP will form. Cdc42 signaling is increasingly implicated in this process,2,10 with downstream consequences that include control of mitotic spindle orientation,5 which itself influences PAP placement5 and potentially regulation of cell-cell junctions. Like other Rho family GTPases, the subcellular location of Cdc42 signaling is determined by the action of upstream proteins, notably guanine nucleotide exchange factors (GEFs).11,12 Of these, Tuba, a Cdc42-specific GEF,13 has emerged as a regulator of lumenal morphogenesis that controls PAP placement through mitotic spindle orientation.10Tuba is also a scaffolding protein13 capable of linking the actin assembly machinery with trafficking pathways. Not only is Tuba required for Cdc42 activation to direct spindle orientation,5 it also has the potential to interact with phosphoinositides that define the PAP.14 Additionally, Tuba binds directly to the actin regulator N-WASP, a key molecule in the organization of actin and itself a Cdc42 effector.15 Further, Tuba and N-WASP cooperate in various forms of actin-driven cellular motility, such as vesicle propulsion and cell invasive behavior.16 Interestingly, in epithelial cells N-WASP is also found at cadherin-based cell-cell junctions.17 In fact it has been proposed that N-WASP functions downstream of Tuba in the maintenance of epithelial junctional homeostasis as N-WASP overexpression was capable of rescuing a Tuba KD phenotype.18 Therefore, Tuba has the potential to play a central role in coordinating the molecular complexes required for productive polarization of epithelial cells and placement of the PAP during lumenogenesis. However, whether other protein interactions contribute to the morphogenetic impact of Tuba remain to be assessed.Three-dimensional cell culture systems are being utilized to identify critical components in lumen formation. In particular, Madin-Darby canine kidney cells (MDCK) and Caco-2 gastrointestinal cells are commonly used to study cyst and/or tubule formation. MDCK cells undergo both cyst and tubule growth, apoptosis being primarily responsible for the final step in lumen formation,19 while Caco-2 cells primarily utilize fluid influx to expand cysts.5 Cyst culture systems replicate aspects of in vivo organogenesis20 providing tangible, powerful models to analyze and dissect the coordinated cellular mechanisms and processes that occur during epithelial morphogenesis.In this study we examined the relationship between Tuba and N-WASP in early epithelial lumenogenesis using Caco-2 three dimensional cyst cultures. Both Tuba and N-WASP RNAi cell lines result in mature cysts with multiple lumina, and at the two-cell stage, formed multiple PAPs. Interestingly, N-WASP KD perturbed Tuba localization at the PAP, however, N-WASP localization to the PAP was not affected to the same extent by Tuba KD. Taken together, these results suggest a complex interrelationship between Tuba and N-WASP for the coordinated formation of a single hollow lumen.  相似文献   

13.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号