首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoserine aminotransferase (PSA) catalyzes the conversion of phosphohydroxypyruvate to phosphoserine in the phosphorylated pathway of serine biosynthesis. A cDNA clone encoding PSA was isolated from the cDNA library of spinach (Spinacia oleracea L.) green leaves. Determination of the nucleotide sequence revealed the presence of an open reading frame encoding 430 amino acids, exhibiting 38-50% homology with the amino acid sequences of bacterial, yeast and animal PSA. It contains an N-terminal extension of ca. 60 amino acids in addition to the sequences from other organisms. The general features of plastidic transit peptide are observed in this N-terminal sequence, suggesting the plastid localization of the PSA protein encoded by this cDNA. The bacterial expression of the cDNA could functionally rescue the auxotrophy of serine in the serC- mutant, Escherichia coli KL282. The enzymatic activity of PSA was demonstrated in vitro in the extracts of E. coli over-expressing the cDNA. Southern blot analysis indicated the presence of a couple of related genes (Psa) in the spinach genome. RNA blot hybridization suggested the preferential expression of the Psa gene in the roots of green seedlings and in the suspension cells cultured under a dark condition.  相似文献   

2.
The effect of certain nutrients on the growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. Glucose was found to inhibit the synthesis of proteinase in the early (28 h of growth) but not in the late stationary phase (48 h of growth). The inhibitory effect of the other mono-and disaccharides studied was less pronounced. Casamino acids added to the medium at concentrations of 0.1–1% as an additional carbon and nitrogen source stimulated enzyme biosynthesis. Individual amino acids (cysteine, asparagine, glutamine, tryptophan, histidine, and glutamate) also stimulated enzyme biosynthesis in the early stationary phase by 25–30%, whereas other amino acids (valine, leucine, alanine, and aspartate) were ineffective or even slightly inhibitory to enzyme production. The stimulatory effect of the first group of amino acids on the synthesis of proteinase in the late stationary phase was negligible. In contrast, the bivalent ions Ca2+, Mg2+, and Mn2+ stimulated biosynthesis of proteinase in the late stationary phase (by 20–60%) and not in the early stationary phase. The data indicate that there are differences in the biosyntheses of proteinase by the recombinant B. subtilis strain during the early and late periods of the stationary phases.  相似文献   

3.
The incorporation of radioactivity from [1,2-34C]choline, [1,2-34C]ethanolamine, [3-14C]serine and [methyl-14C]methionine into lipids was studied in growing cultures of Crithidia fasciculata. Lecithin was formed both from choline and by the methylation of phosphatidylethanolamine. Mono- and dimethylphosphatidylethanolamines were present in no more than trace amounts. Growth of the protozoa in media containing choline (1 mM) did not decrease synthesis by the methylation pathway. Phosphatidylethanolamine was formed from ethanolamine. Radioactivity from serine also was present in both phosphatidylethanolamine and lecithin; however, the presumed intermediate, phosphatidylserine, could not be detected.  相似文献   

4.
L-[1,2-13C2,15N]Serine was prepared from [1,2-13C2,15N]glycine on a gram scale by the use of the enzyme serine hydroxymethyltransferase. The reaction was monitored by 13C-NMR spectroscopy. This is the first simultaneously 13C- and 15N-labelled serine isotopomer so far reported. Part of the product was directly converted by tryptophan synthase to L-[1,2-13C2,15N]tryptophan which could conveniently be purified and isolated as Boc-derivative in a yield of 71%. Most of the serine was isolated similarly but to remove remaining starting material in this case purification by column chromatography was required. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci.3: 361–366 No. of Figures: 1. No. of Tables: 0. No. of References: 32  相似文献   

5.
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosyntheis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5–1%, gelatin at concentrations of 0.5–1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V–VII stages of sporulation).  相似文献   

6.
Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study using overexpressing plants indicated that all PGDH family genes were able to regulate Ser homeostasis but only lacking of EDA9 expression caused drastic developmental defects. We provided genetic and molecular evidence for the essential role of EDA9 for embryo and pollen development. Here, some new insights into the physiological/molecular function of PPSB and Ser are presented and discussed.  相似文献   

7.
TheSalmonella typhimurium genes for serine acetyltransferase (cys E) and O-acetylserine sulphydrylase B (cys M) were isolated and characterized in order to express these as transgenes in sheep to establish a cysteine biosynthesis pathway and, thereby, to achieve an increased rate of wool growth. Comparison of theS. typhimurium andEscherichia coli genes showed considerable homology, both at the nucleotide and amino acid sequence levels. Thein vitro andin vivo expression studies showed that both genes could be transcribed and translated in eukaryotic cells and that their products could function as active enzymes. Thecys M gene ofS. typhimurium possessed a GUG initiation codon, like itsE. coli counterpart, but translation could be initiated using this codon in eukaryotic cells to give an active enzyme product. Chinese hamster ovary cells, stably transfected with a tandem arrangement of the two genes, showed a capacity to synthesize cysteinein vivo, indicating the establishment of a cysteine biosynthesis pathway in these cells. The measured levels of activity of the gene products suggest that improved wool growth is possible by transgenesis of sheep with these genes.  相似文献   

8.
The metabolic requirements of cancer cells differ from that of their normal counterparts. To support their proliferation, cancer cells switch to a fermentative metabolism that is thought to support biomass production. Instances where metabolic enzymes promote tumorigenesis remain rare. However, an enzyme involved in the de novo synthesis of serine, 3-phosphoglycerate dehydrogenase (PHGDH), was recently identified as a putative oncogene. The potential mechanisms by which PHGDH promotes cancer are discussed.  相似文献   

9.
10.
In plants, 3 different pathways of serine biosynthesis have been described: the Glycolate pathway, which is associated with photorespiration, and 2 non-photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been known since the 1950s, but has been studied relatively little, probably because it was considered of minor significance as compared with the Glycolate pathway. In the associated study1, we described for the first time in plants the in vivo functional characterization of the PPSB, by targeting the phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Following a gain- and loss-of-function approach in Arabidopsis, we provided genetic and molecular evidence for the essential role of PSP1 for embryo and pollen development, and for proper root growth. A metabolomics study indicated that the PPSB affects glycolysis, the Krebs cycle, and the biosynthesis of several amino acids, which suggests that this pathway is an important link connecting metabolism and development. The mechanisms underlying the essential functions of PSP1 are discussed.  相似文献   

11.
Using the synthetic peptide substrate Kemptide and cytosolic extracts of mouse fibroblasts transfected with a human insulin receptor cDNA construct, we have studied an insulin-sensitive serine kinase activity. This activity is rapidly stimulated by insulin (maximum within 5 min) and also by orthovanadate. During cell extract preparation, paranitrophenylphosphate and phosphotyrosine are able to preserve the enzyme activity, while phosphothreonine and phosphoserine fail to do so. Using antiphosphotyrosine antibodies, specific immunoprecipitation of this insulin- and orthovanadate-sensitive serine kinase was obtained. We then analysed by gel filtration chromatography eluates containing tyrosine-phosphorylated proteins obtained from unstimulated, insulin- and vanadate-treated cells. We found that several activities, with molecular weights estimated to be 30 kDa and smaller, are stimulated by both, insulin and orthovanadate. As a whole, our data indicate that insulin and orthovanadate enhance the cytosolic content in at least 2 or 3 phosphotyrosine-containing serine kinase activities.Abbreviations EGF Epidermal Growth Factor - IGF I Insulin-like Growth Factor I - PDGF Platelet-Derived Growth Factor - DMEM Dulbecco's Modified Eagle's Medium - FCS Fetal Calf Serum - PBS Phosphate Buffered Saline - PNPP Para-nitrophenylphosphate - BSA Bovine Serum Albumin - -Tyr Antiphosphotyrosine Antibodies - MAP 2 Microtubule-Associated Protein 2 - Hepes N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - EDTA Ethylenediamine Tetraacetic Acid - DTT Dithiothreitol - SDS-PAGE Sodium Dodecyl Sulfate/Polyacrylamide Gel Electrophoresis - EGTA [Ethylenebis(oxyethylenenitrilo)] Tetraacetic Acid - TRIS Tris(hydroxymethyl)-Aminoethane - IRSK Insulin Receptor-Associated Serine Kinase - KIK Kemptide Insulin-stimulated Kinase  相似文献   

12.
The incorporation of (±)-coclaurine, (±)-norcoclaurine, (±)-N-methylcoclaurine and didehydro-N-methyleoclaurinium iodide into tetrandrine in Cocculus laurifolius has been studied and specific utilization of (±)-N-ethylcoclaurine demonstrated. The evidence indicates that tetrandrine is formed in the plants by oxidative dimerization of N-methylcoclaurine. Double labelling experiment with (±)-N- [14C]-methyl- [1-3H]-coclaurine demonstrated that the hydrogen atom at the asymmetric centre in the 1-benzylisoquinoline precursor is retained in the bioconversion into tetrandrine. Parallel feedings of (+)-(S)- and (?)-(R)-N-methylcoclaurines showed that the stereospecificity is maintained in the biosynthesis of tetrandrine from the 1-benzylisoquinoline precursor.  相似文献   

13.
14.
A serine protease of MW 69000 has been isolated, in homogeneous form, from the latex of Hevea brasiliensis. The enzyme, named hevain, has only limited esterolytic and proteolytic abilities, a maximum activity in the pH range 6.5–7.5, and a pI of 4.3. Hevain has a notably high content of acidic amino acids, while the aromatic residues are present in relatively minor amounts.  相似文献   

15.
3-Phosphoglycerate dehydrogenase from etiolated pea epicotyls was not affected during in vitro assay by a range of hexose phosphates, amino group precursors and nucleotides at 1 mM but was significantly inhibited by 1 mM ATP and GTP. ADP and GDP gave slight inhibition at this concentration. NADH caused almost total inhibition at 0.45 mM.  相似文献   

16.
Lasso peptide isopeptidase is an enzyme that specifically hydrolyzes the isopeptide bond of lasso peptides, rendering these peptides linear. To carry out a detailed structure-activity analysis of the lasso peptide isopeptidase AtxE2 from Asticcacaulis excentricus, we solved NMR structures of its substrates astexin-2 and astexin-3. Using in vitro enzyme assays, we show that the C-terminal tail portion of these peptides is dispensable with regards to isopeptidase activity. A collection of astexin-2 and astexin-3 variants with alanine substitutions at each position within the ring and the loop was constructed, and we showed that all of these peptides except for one were cleaved by the isopeptidase. Thus, much like the lasso peptide biosynthetic enzymes, lasso peptide isopeptidase has broad substrate specificity. Quantitative analysis of the cleavage reactions indicated that alanine substitutions in loop positions of these peptides led to reduced cleavage, suggesting that the loop is serving as a recognition element for the isopeptidase.  相似文献   

17.
De novo synthesis of contact female sex pheromone and hydrocarbons in Blattella germanica was examined using short in vivo incubations. Accumulation of pheromone on the epicuticular surface and the internal pheromone titer were related to age-specific changes in hydrocarbon synthesis and accumulation in normal and allatectomized females. The incorporation of radiolabel from [1-14C]propionate into the cuticular methyl ketone pheromone fraction was positively related to corpora allata activity during two gonotrophic cycles. During peak pheromone production the total internal lipid fraction contained greater titers of pheromone than the cuticular surface, and it too exhibited a cycle internally, preceding the rise in external pheromone. This suggests that synthesis and accumulation of pheromone internally are followed by transport of pheromone to the epicuticular surface where it accumulates. Radiolabel was incorporated efficiently into both cuticular and internal hydrocarbons after the imaginal molt and until the peak of pheromone synthesis, but it declined to lower levels before ovulation and throughout pregnancy. The internal hydrocarbon titer decreased 58% after oviposition, suggesting deposition in the egg case. It remained relatively unchanged during pregnancy and increased again during the second gonotrophic cycle. In allatectomized females, hydrocarbon synthesis was reduced relative to control females until oviposition in the latter. However, subsequent rates of hydrocarbon synthesis in allatectomized females (without oothecae) exceeded the rates in sham-operated females (with oothecae). In the absence of ovarian uptake of hydrocarbons, the internal titer increased without the decline found in control females at oviposition. As internal hydrocarbons increased, so did cuticular hydrocarbons and both internal and cuticular methyl ketone pheromones. These patterns corresponded well with feeding patterns in sham-operated and allatectomized females, suggesting that pheromone production is normally regulated by stage-specific feeding-induced hydrocarbon synthesis (precursor accumulation internally) and juvenile hormoneinduced conversion of hydrocarbon to pheromone. They also suggest that both the cuticle and the ovaries might be target sites for hydrocarbon and possibly methyl ketone deposition. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Summary

In this review, the different aspects of the ecdysone biosynthesis have been described. The “early step problem” and the enzymes which are involved in the final sequence of hydroxylations are discussed in detail. The recent results obtained on ecdysone biosynthesis in embryos are also summarized.  相似文献   

19.
20.
The midgut proteinase activities were characterized from the keratinolytic larvae of two lepidopterans, Hofmannophila pseudospretella (Stainton) (Oecophoridae) and Tineola bisselliella (Hummel) (Tineidae), and one coleopteran, Anthrenocerus australis (Hope) (Dermestidae). The major endopeptidase activities, characterized using specific enzyme inhibitors, were serine proteinases with hydrolytic activity against N-benzoyl-DL-arginine-p-nitroanilide and against N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-leucine-p-nitroanilide. No significant levels of metalloendopeptidase or cysteine endopeptidase activities were detected. Aminopeptidase activity was present in all larvae. The enzyme levels and properties of the two moth larvae were similar to each other and to those of phytophagous lepidopteran larvae but different from those of the beetle larva. Whereas only a limited number of serine proteinase inhibitors inhibited the midgut proteolysis of the lepidopteran larvae, most inhibitors inhibited the midgut proteolysis of the beetle larva. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号