首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a second messenger, H2O2 generation and signal transduction is subtly controlled and involves various signal elements, among which are the members of MAP kinase family. The increasing evidences indicate that both MEK1/2 and p38-like MAP protein kinase mediate ABA-induced H2O2 signaling in plant cells. Here we analyze the mechanisms of similarity and difference between MEK1/2 and p38-like MAP protein kinase in mediating ABA-induced H2O2 generation, inhibition of inward K+ currents, and stomatal closure. These data suggest that activation of MEK1/2 is prior to p38-like protein kinase in Vicia guard cells.Key words: H2O2 signaling, ABA, p38-like MAP kinase, MEK1/2, guard cellAn increasing number of literatures elucidate that reactive oxygen species (ROS), especially H2O2, is essential to plant growth and development in response to stresses,14 and involves activation of various signaling events, among which are the MAP kinase cascades.13,5 Typically, activation of MEK1/2 mediates NADPH oxidase-dependent ROS generation in response to stresses,4,68 and the facts that MEK1/2 inhibits the expression and activation of antioxidant enzymes reveal how PD98059, the specific inhibitor of MEK1/2, abolishes abscisic acid (ABA)-induced H2O2 generation.6,8,9 It has been indicated that PD98059 does not to intervene on salicylic acid (SA)-stimulated H2O2 signaling regardless of SA mimicking ABA in regulating stomatal closure.2,6,8,10 Generally, activation of MEK1/2 promotes ABA-induced stomatal closure by elevating H2O2 generation in conjunction with inactivating anti-oxidases.Moreover, activation of plant p38-like protein kinase, the putative counterpart of yeast or mammalian p38 MAP kinase, has been reported to participate in various stress responses and ROS signaling. It has been well documented that p38 MAP kinase is involved in stress-triggered ROS signaling in yeast or mammalian cells.1113 Similar to those of yeast and mammals, many studies showed the activation of p38-like protein kinase in response to stresses in various plants, including Arabidopsis thaliana,1416 Pisum sativum,17 Medicago sativa18 and tobacco.19 The specific p38 kinase inhibitor SB203580 was found to modulate physiological processes in plant tissues or cells, such as wheat root cells,20 tobacco tissue21 and suspension-cultured Oryza sativa cells.22 Recently, we investigate how activation of p38-like MAP kinase is involved in ABA-induced H2O2 signaling in guard cells. Our results show that SB203580 blocks ABA-induced stomatal closure by inhibiting ABA-induced H2O2 generation and decreasing K+ influx across the plasma membrane of Vicia guard cells, contrasting greatly with its analog SB202474, which has no effect on these events.23,24 This suggests that ABA integrate activation of p38-like MAP kinase and H2O2 signaling to regulate stomatal behavior. In conjunction with SB203580 mimicking PD98059 not to mediate SA-induced H2O2 signaling,23,24 these results generally reveal that the activation of p38-like MAP kinase and MEK1/2 is similar in guard cells.On the other hand, activation of p38-like MAP kinase23,24 is not always identical to that of MEK1/28,25 in ABA-induced H2O2 signaling of Vicia guard cells. For example, H2O2- and ABA-induced stomatal closure was partially reversed by SB203580. The maximum inhibition of both regent-induced stomatal closure were observed at 2 h after treatment with SB203580, under which conditions the stomatal apertures were 89% and 70% of the control values, respectively. By contrast, when PD98059 was applied together with ABA or H2O2, the effects of both ABA- and H2O2-induced stomatal closure were completely abolished (Fig. 1). These data imply that the two members of MAP kinase family are efficient in H2O2-stimulated stomatal closure, but p38-like MAP kinase is less susceptive than MEK1/2 to ABA stimuli.Open in a separate windowFigure 1Effects of SB203580 and PD98059 on ABA- and H2O2-induced stomatal closure. The experimental procedure and data analysis are according to the previous publication.8,23,24It has been reported that ABA or NaCl activate p38 MAP kinase in the chloronema cells of the moss Funaria hygrometrica in 2∼10 min.26 Similar to this, SB203580 improves H2O2-inhibited inward K+ currents after 4 min and leads it to the control level (100%) during the following 8 min (Fig. 2). However, the activation of p38-like MAP kinase in response to ABA need more time, and only recovered to 75% of the control at 8 min of treatment (Fig. 2). These results suggest that control of H2O2 signaling is required for the various protein kinases including p38-like MAP kinase and MEK1/2 in guard cells,1,2,8,23,24 and the ABA and H2O2 pathways diverge further downstream in their actions on the K+ channels and, thus, on stomatal control. Other differences in action between ABA and H2O2 are known. For example, Köhler et al. (2001) reported that H2O2 inhibited the K+ outward rectifier in guard cells shows that H2O2 does not mimic ABA action on guard cell ion channels as it acts on the K+ outward rectifier in a manner entirely contrary to that of ABA.27Open in a separate windowFigure 2Effect of SB203580 on ABA- and H2O2-inhibited inward K+ currents. The experimental procedure and data analysis are according to the previous publication.24 SB203580 directs ABA- and H2O2-inactivated inward K+ currents across plasma membrane of Vicia guard cells. Here the inward K+ currents value is stimulated by −190 mV voltage.Based on the similarity and difference between PD98059 and SB203580 in interceding ABA and H2O2 signaling, we speculate the possible mechanism is that the member of MAP kinase family specially regulate signal event in ABA-triggered ROS signaling network,14 and the signaling model as follows (Fig. 3).Open in a separate windowFigure 3Schematic illustration of MAP kinase-mediated H2O2 signaling of guard cells. The arrows indicate activation. The line indicates enhancement and the bar denotes inhibition.  相似文献   

2.
3.
The apical plasma membrane of young Arabidopsis root hairs has recently been found to contain a depolarisation-activated Ca2+ channel, in addition to one activated by hyperpolarisation. The depolarisation-activated Ca2+ channel may function in signalling but the possibility that the root hair apical plasma membrane voltage may oscillate between a hyperpolarized and depolarized state suggests a role in growth control. Plant NADPH oxidase activity has yet to be considered in models of oscillatory voltage or ionic flux despite its predicted electrogenicity and voltage dependence. Activity of root NADPH oxidase was found to be stimulated by restricting Ca2+ influx, suggesting that these enzymes are involved in sensing Ca2+ entry into cells.Key words: calcium, channel, NADPH oxidase, oscillation, root hairElevation of cytosolic free Ca2+ ([Ca2+]cyt) encodes plant cell signals.1 Reactive oxygen species (ROS) are potent regulators of the PM Ca2+ channels implicated in signalling and developmental increases in [Ca2+]cyt.1,2 Plasma membrane (PM) voltage (Vm) also plays a significant part in generating specific [Ca2+]cyt elevations through the opening of voltage-gated Ca2+-permeable channels, allowing Ca2+ influx.1,3 Patch clamp electrophysiological studies on the root hair apical PM of Arabidopsis have revealed co-localisation of hyperpolarisation-activated Ca2+ channels (HACCs),4 ROS-activated HACCs5 and depolarisation-activated Ca2+ channels (DACCs).6 The DACC characterisation pointed to the presence of a Cl-permeable conductance that was activated by moderate hyperpolarisation (−160 mV) but rapidly inactivated when the voltage was maintained at such negative values.6 This may be the R-type anion efflux conductance previously described in Arabidopsis root hair and root epidermal PM.7 Previous studies have shown that root hair PM also harbors K+ channels (mediating inward or outward flux)810 and a H+-ATPase.11 A key problem to address now is how these transporters interact to generate and be influenced by PM Vm, thus gating and in turn being regulated by their companion Ca2+ channels to encode developmental and environmental signals at the hair apex.A seminal study on the relationship between Vm and ionic fluxes in wheat root protoplasts not only confirmed oscillatory events but also determined that the PM can exist in three distinct states.12 In the “pump state” the H+-ATPase predominates, there is net H+ efflux and the hyperpolarized Vm is negative of the equilibrium potential for K+ (EK). In the “K state”, K+ permeability predominates but there is still net H+ efflux and Vm = EK. In the third state, there is net H+ influx and Vm > EK. In this depolarized H+-influx state, the H+-ATPase is thought to be inactive. Oscillations in PM Vm and H+ flux may be more profound in growing cells13,14 and oscillations between these states may explain the temporal changes in H+ flux recently observed at the apex of growing Arabidopsis root hairs.15 Peaks of H+ influx may reflect a depolarized Vm that could activate DACC, suggesting that DACC would play a significant role in growth regulation. The view has arisen that the HACC would be the main driver of growth, primarily because in patch clamp assays its current is greater than DACC46 and because resting Vm is usually found to be hyperpolarized. In a growing cell, with a Vm oscillating between a hyperpolarized and depolarized state, a DACC could just as well be a driver of growth given that the Ca2+ influx it permits could be amplified through intracellular release.The PM H+-ATPase traditionally lies at the core of models of voltage and ionic flux14,16 but in terms of [Ca2+]cyt regulation, the activity of PM NADPH oxidases must also now be considered. The Arabidopsis root hair apical PM also contains an NADPH oxidase (AtrbohC) that catalyses extracellular superoxide production.5 AtrbohC is implicated in the transition to polar growth at normal extracellular pH5 and also osmoregulation.17 NADPH oxidases catalyse the transport of electrons out of the cell and thus, in common with PM redox e efflux systems,18 their activity would depolarize the membrane voltage unless countered by cation efflux or anion influx.19 Two H+ would also be released into the cytosol for every NADPH used. The voltage-dependence of plant NADPH oxidases is unknown but e efflux by animal NADPH oxidases is fairly constant over negative Vm and decreases at very depolarized Vm.20 AtrbohC is implicated in generating oscillatory ROS at the root hair apex and loss of function affects magnitude and duration of apical H+ flux oscillations.15 The latter suggests that AtrbohC function does in some way affect Vm, a situation extending to other root cell types (such as the epidermis) expressing NADPH oxidases.21NADPH oxidase activity in roots is under developmental control but also responds to anoxia and nutrient deficiency22,23 to signal stress conditions. Blockade of PM Ca2+ channels by lanthanides increases superoxide production in tobacco suspension cells.24 This suggests that NADPH oxidases are involved in sensing the cell''s Ca2+ status and the prediction would be that extracellular Ca2+ chelation would increase their activity. To test this, superoxide anion production by excised Arabidopsis roots was measured using reduction of the tetrazolium dye XTT (Sodium, 3′-[1-[phenylamino-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulphonic acid).25,26 Lowering extracellular Ca2+ from 0.5 mM to 1.4 µM by addition of 10 mM EGTA caused a mean 95% increase in diphenyliodinium-sensitive superoxide production (Fig. 1; n = 9), implicating NADPH oxidases as the source of this ROS. Stimulation of NADPH oxidase activity by decreasing Ca2+ influx at first appears contradictory as NADPH oxidases are stimulated by increased [Ca2+]cyt27 (Fig. 1). However, reduction of Ca2+ influx should promote voltage hyperpolarisation (just as block of K+ influx causes hyperpolarisation in root hairs28) and this could feasibly cause increased NADPH oxidase activity. Production of superoxide could then result in ROS-activated HACC activity5 to increase Ca2+ influx.Open in a separate windowFigure 1Superoxide anion production by Arabidopsis roots. Assay medium comprised 10 mM phosphate buffer with 0.5 mM CaCl2, 500 µM XTT, pH 6.0. Production was linear over the 30 min incubation period. Control, mean ± standard error, n = 9. Test additions were: 20 µM of the NADPH oxidase inhibitor diphenylene iodonium (DPI; n = 6); 100 µM of the Ca2+ ionophore A23187,30 to increase [Ca2+]cyt (n = 9); 10 mM of the chelator EGTA (n = 9). Dimethyl sulphoxide [DMSO; 1% (v/v)] was used as a carrier for XTT and DPI and a separate control for this is shown (n = 9).In addition to Vm, activities of PM transporters in vivo will be subject to other levels of regulation such as phosphorylation, nitrosylation and the action of [Ca2+]cyt itself. Distinct spatial separation of transporters will undoubtedly play a significant role in governing Vm and [Ca2+]cyt dynamics, particularly in growing cells. An NADPH oxidase has already been found sequestered in a potential PM microdomain in Medicago.29 While there is still much to do on the “inventory” of PM transporters involved in Ca2+ signalling in any given cell, placing them in context not only requires knowledge of their genetic identity but also modelling of their concerted action.  相似文献   

4.
Proton pumps produce electrical potential differences and differences in pH across the plasma membrane of cells which drive secondary ion transport through sym- and antiporters. We used the patch-clamp technique to characterize an H+-pump in the xylem parenchyma of barley roots. This cell type is of special interest with respect to xylem loading. Since it has been an ongoing debate whether xylem loading is a passive or an active process, the functional characterization of the H+-pump is of major interest in the context of previous work on ion channels through which passive salt efflux into the xylem vessels could occur. Cell-type specific features like its Ca2+ dependence were determined, that are important to interpret its physiological role and eventually to model xylem loading. We conclude that the electrogenic pump in the xylem parenchyma does not participate directly in the transfer of KCl and KNO3 to the xylem but, in combination with short-circuiting conductances, plays a crucial role in controlling xylem unloading and loading through modulation of the voltage difference across the plasma membrane. Here, our recent results on the H+ pump are put in a larger context and open questions are highlighted.Key Words: plant nutrition, H+-ATPase, anion conductance, K+ channel, electrophysiology, signaling networkThe root xylem parenchyma is of major interest with respect to nutrient (and signal) traffic between root and shoot. One of its main functions appears to be xylem loading. However, the cell walls of the vascular tissue provide apoplastic paths between xylem and phloem that represent the upward and downward traffic lanes, allowing nutrient circulation1 (Fig. 1). Therefore mechanisms for ion uptake and for ion release must exist side by side. In the last 15 years major progress has been made in the investigation of transport properties of xylem-parenchyma cells, and both uptake and release channels and transporters were identified. Today, we have good knowledge on the role of K+ and anion conductances in xylem loading with salts.2 Note, that from the functionally well characterized conductances only the molecular structure of K+ channels is known. In contrast, many transporters are identified on the molecular level, but functional data are scarce.Open in a separate windowFigure 1Distribution of tissues in the periphery of the stele. The stippled area marks the region from which early metaxylem protoplasts originated. E, Endodermis with Casparian strip; eMX, ‘early’ metaxylem vessel; IMX, ‘late’ metaxylem vessel; Mph, metaphloem (sieve tube); Pph, protophloem (sieve tube); P, pericycle; Cx, cortex. Symplasmic and apoplasmic transport routes are indicated in red and black, respectively. The Casparian strip prevents apoplastic transport into the stele. Plasmodesmata are shown exemplarily for the indicated symplastic pathway. All cells of the symplast are connected via plasmodesmata. Sites of active uptake into the root symplast and of release into the stelar apoplast are indicated by a black and an orange arrow. Modified from Wegner and Raschke, 1994.3A challenging question to deal with was the dispute about xylem loading with ions being a passive or active process. While it is clear that energy through electrogenic H+ efflux is needed to take up nutrient ions from the soil against their electrochemical gradient into the cortical symplast, it has been a matter of debate if ion release into xylem vessels also is energy-linked or if the electrochemical potentials of ions are raised high enough to allow a thermodynamically passive flux.2,3 The Casparian strip prohibits apoplastic transport of nutrients into the stele and electrically insulates the stelar from the cortical apoplast. Therefore the electrical potential difference of the cells in the xylem parenchyma could be independent from the cortical potential difference but be subject to control, for instance, from the shoot.4 Indeed, evidence points to xylem loading as a second control point in nutrient transfer to the shoot.5,6 The identification and characterization of K+ and anion conductances clearly showed that release of KCl and KNO3 into the xylem can be passive through voltage-dependent ion channels.2,3,79 No need appeared for a pump energizing the transfer of salts to the xylem.However, H+ pumps are ubiquitous. H+-ATPases are encoded by a multigene family and heterologous expression in yeast showed that isoforms have distinct enzymatic properties.10,11 As the example of the amino acid transporter AAP6 from the xylem parenchyma shows, a cell-type specific functional characterization of transporters is essential to draw conclusions on their physiological role. AAP6 is the only member of a multigene family with an affinity for aspartate in the physiologically relevant range. The actual apoplastic concentration of amino acids and the pH will determine what is transported in vivo.12,13 Xylem-parenchyma cells of barley roots were strongly labelled by antibodies against the plasma membrane H+-ATPase.14 In a recent publication in Physiologia Plantarum we report the functional analysis of the electrogenic pump from the plasma membrane of xylem parenchyma from barley roots that was done with the patch-clamp technique after specific isolation of protoplasts from this cell type. It displayed characteristics of an H+-ATPase: current-voltage relationships were characteristic for a ‘rheogenic’ pump15 and currents were stimulated by fusicoccin or by an enlarged transmembrane pH gradient and inhibited by dicyclohexylcarbodiimide (DCCD). Importantly, it also showed distinct characteristics. Neither intracellular pH nor the intracellular Ca2+ concentration affected its activity. Noteworthy, K+ and anion conductances from the same cell type are controlled by intracellular [Ca2+]7,9 (Fig. 2). It was proposed that the effect of abscisic acid (ABA) on anion conductances is mediated via an increase in the cytosolic Ca2+ concentration.16 Very likely stelar H+ pumps are stimulated by ABA.17 Thus, a Ca2+ independent control has to be hypothesized in this case.Open in a separate windowFigure 2Control of ion conductances in the plasma membrane of xylem-parenchyma cells. Arrowheads indicate stimulation and bars indicate inhibition by an increase in cytosolic [Ca2+],7,9,16 by ABA,16,17,21 by cytosolic and apoplastic acidification,4,22 by G-proteins23 and by an increase in apoplastic [K+]7 and [NO3].24 Apoplastic [K+] and [NO3] modify the voltage dependence exerting negative feedback on K+ efflux and a positive feedback on NO3 efflux. Abscisic acid has an immediate effect on ion channel activity, most likely via [Ca2+], and causes a change in gene expression as indicated by circles (up) and bars (down). ABA perception is not clear. A Ca2+ influx could occur through a hyperpolarization activated cation conductance (HACC).16,25 Cation transporters are NORC, nonselective cation conductance, KORC, K+-selective outwardly rectifying conductance (=SKOR8), and KIRC, K+-selective inwardly rectifying conductance, and anion conductances with different voltage-dependencies and gating characteristics are X-QUAC, quickly activating anion conductance, X-SLAC, slowly activating anion conductance, and X-IRAC, inwardly rectifying anion channel.2,3,9,16,26 Transported ions and direction of flux are plotted.To date, we know that besides Ca2+ and abscisic acid also the pH, nonhydrolyzable GTP analogs and extracellular NO3 and K+ affect membrane transport capacities of root xylem-parenchyma cells (Fig. 2). Other control mechanisms by metabolites, the redox potential and phytohormones have to be included, especially if they represent signals in xylem loading or root-shoot communication. The composition of the xylem sap changes during the course of a day, depending on nutrient supply and various stresses, and the apoplastic ion concentration is considered to be an important factor in ion circulation.6,18,19 ABA is such a signal. It is known to increase solute accumulation within the root by inhibiting release of ions into the xylem.17 Any change in transport activity has an impact on the membrane potential. This again determines whether salt release or uptake takes place. Passive salt release is restricted to a limited range of membrane potentials in which conductances for anions and cations are active simultaneously, that is with depolarization. Negative membrane voltages will be required for reabsorption of NO3 by a putative NO3/H+-symporter and for the uptake of K+ and amino acids.3,13 As shown in our recent paper, the balance between the activities of the H+-pump and the anion conductances could affect the position between a depolarized and a hyperpolarized state of the parenchymal membrane. Thus, H+ pump activity is crucial in membrane voltage control. Furthermore, the simultaneous activities of H+ pumps and anion conductances make the generation of a high pH gradient possible, whilst maintaining electroneutrality. The proton gradient could be used for ion transport through cotransporters and antiporters as suggested for the loading of borate into the xylem through the boron transporter BOR1.20 So we are on the way to decipher xylem loading in roots and this exciting field will also provide information about small-scale nutrient cycling and root-shoot communication. To determine how the activities of pumps, channels and transporters are adjusted among each other is the next challenge. Further insight has to be obtained by experimentation as well as by biophysical modeling.  相似文献   

5.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

6.
Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant''s stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport.Key words: abiotic stress, Ca2+ transport, Ca2+/H+ exchanger, H+-ATPase, Na+ transport, pH, salt stress, vacuoleCa2+ plays a fundamental role in the plant cell, functioning as a highly versatile second messenger controlling a multitude of cellular reactions and adaptive responses.1,2 Ca2+ dynamics are maintained by precise interplay among transporters involved in its release from or uptake into Ca2+ stores. The vacuole, as the largest internal Ca2+ pool, is assumed to play a major role in Ca2+ signalling, and has been shown to be the source of Ca2+ release following various abiotic stresses such as cold and osmotic stress.3,4 Rapid, stimulus-induced release of Ca2+ from the vacuole is attributable to selectively permeable Ca2+ channels, however, the identity of candidate genes encoding this mechanism remains contested.5,6 Better understood, are the two major vacuolar uptake mechanisms; P-type Ca2+ pumps, including ACA4 and ACA11, which mediate high-affinity Ca2+ uptake, and a family of cation/H+ exchangers (CAX), responsible for lower-affinity but high-capacity Ca2+ uptake.7,8 While Ca2+ pumps rely directly on the hydrolysis of ATP to drive Ca2+ uptake, Ca2+/H+ exchangers are energized indirectly by the pH gradient generated by electrogenic H+ pumps located on the tonoplast, including the vacuolar-type H+-ATPase (V-ATPase).9With the aim of further understanding the role of specific CAX isoforms in Arabidopsis, we and others have recently characterized CAX mutants and overexpression lines and observed a variety of phenotypes, including altered response to abiotic stresses.1014 While some phenotypes are identical among different CAX mutants, others are specific to individual lines.14 Moreover, these analyses have highlighted the interplay of these transporters with H+ pumps at both the tonoplast and the plasma membrane. Overexpression of CAX1 in Arabidopsis results in increased activity of the V-ATPase, whereas mutations in CAX1 cause a concomitant decrease in measured V-ATPase activity (Fig. 1).11 Similar reductions in V-ATPase activity are also observed in cax2 and cax3 mutant plants but to a lesser extent,12,13 and a significant reduction is observed in a cax1 cax3 double knockout line.13 At the plasma membrane, P-type H+-ATPase (P-ATPase) activity is increased in cax1 but decreased in cax3 (Fig. 1).14 Indeed cax3 lines appeared more sensitive to changes in the pH of the growth media.14 This implies that unlike cax1, cax3 is less efficient at cytoplasmic pH adjustment. Another intriguing observation is that activity of the H+-pyrophosphatase (H+-PPase) at the tonoplast is largely unaltered following CAX gene deletion. While overexpression of the Arabidopsis H+-PPase AVP1 leads to increased Ca2+/H+ exchange activity,15,16 there is little alteration in H+-PPase activity following perturbed expression of CAX1 or CAX2.11,12 Thus, this feedback interplay appears to exist only between exchangers and H+-ATPases.Open in a separate windowFigure 1Tonoplast H+-ATPase (V-ATPase) activity and plasma membrane H+-ATPase (P-ATPase) activity in wild type Arabidopsis (ecotype Col-0) and Arabidopsis lines with manipulated tonoplast Ca2+/H+ exchange activity. 35S::CAX1 and 35S::CAX2 denote lines that overexpress a constitutively active N-terminally truncated CAX1 or CAX2 construct driven by the CaMV 35S promoter in the cax1-1 or cax2-1 mutant background, respectively. V-ATPase H+-transport activity was measured by the ATP-dependent quenching of quinacrine fluorescence, and rates of bafilomycin-sensitive, vanadate-resistant hydrolytic activity of the V-ATPase were determined in isolated tonoplast membranes, as described in refs. 11 and 13. Rates of vanadate-sensitive, bafilomycin- and azide-resistant hydrolytic activity of the P-ATPase were determined in isolated plasma membranes, as described in ref. 14. Results are shown as % of wild type (Col-0) ATPase activity and are means ± SE of 3–4 independent experiments. Data taken and modified from refs. 1114.The V-ATPase is important not only for maintenance of a pH gradient across the tonoplast, but also in maintenance of Golgi structure, endocytosis and secretory trafficking.17,18 The V-ATPase is localised at the Golgi, endoplasmic reticulum and endosomes, in addition to the tonoplast.9 The det3 mutant, with a mutation in subunit C (VHA-C), has a 40–60% reduction in V-ATPase activity, but numerous severe developmental phenotypes.19 In contrast, the cax1 and cax1 cax3 mutants have a reduction in V-ATPase activity equivalent to det3 (Fig. 1), but the morphological phenotypes are not as pronounced.13 It is therefore likely that reduction of tonoplast Ca2+/H+ exchange primarily affects tonoplast V-ATPase activity, while V-ATPase activity in the secretory pathway is unperturbed. The V-ATPase is a multi-subunit protein and some of these subunit gene products appear to be either tonoplast-specific or tonoplast-enriched. Mutations in tonoplast subunits may cause defective V-ATPase activity only at the tonoplast.9 It will be of interest to see whether such tonoplast-specific V-ATPase mutants phenocopy the cax mutants, and possess perturbed Ca2+/H+ exchange activity and altered abiotic stress responses.CAX-mediated transport may alter both cytoplasmic and lumenal pH, as well as intracellular Ca2+ gradients. In the case of the V-ATPase, evidence is emerging for a role not only in the generation of a pH gradient across membranes, but also in the direct sensing of pH within the compartment,20,21 creating a feedback mechanism which regulates pump activity. Thus, in cax1 lines, abnormal acidification of the lumen is detected by the V-ATPase resulting in a dampening of its activity. This would conserve ATP, which we postulate could be utilized to drive the tonoplast Ca2+ pump which itself is upregulated in cax1 as a compensatory mechanism to correct perturbations in the Ca2+ gradient.11 In the case of cax1, this in turn may signal the P-ATPase to remove surplus H+ from the cytoplasm, triggering its upregulation (Fig. 1). However, not all CAX mutants show this complex H+ feedback mechanism.Co-ordinate downregulation of the V-ATPase in the cax1 mutant lines may also be a result of activity of the SOS2 kinase. This Ser/Thr kinase, which specifically interacts with the N-terminus of CAX1 resulting in Ca2+/H+ exchange activation,22 upregulates V-ATPase activity through interactions with the VHA-B regulatory subunit.23 Loss of CAX1 may be signalling to the V-ATPase through changes in SOS2 activity resulting in a compensatory downregulation of the pump. It is tempting to speculate that SOS2 may signal the alteration in P-ATPase activity, as it is known to regulate other plasma membrane proteins, notably the Na+/H+ exchanger SOS1.24 It will be interesting to determine if SOS2 and the P-ATPase interact directly. It is notable, however, that SOS2 does not appear to interact with CAX3,22 while P-ATPase activity is reduced in cax3 plants.14Our recent results indicate there are at least two modes by which Ca2+/H+ exchangers can mediate adaptive responses to stress: direct manipulation of cytosolic Ca2+ and indirect feedback of H+ flux (Fig. 2). For example, salt stress responses are likely controlled via the generation of a specific cytosolic Ca2+ signature, which mediates a downstream signalling pathway. CAX3 appears to be the principle isoform providing tonoplast Ca2+/H+ exchange in response to salt stress.14 Disruption of CAX3-mediated tonoplast Ca2+ transport and the alteration of cytosolic Ca2+ dynamics may therefore alter the plant''s normal response to salt stress (Fig. 2). Maintenance of H+ gradients at both the vacuole and plasma membrane are also critical for salt tolerance, such that salt treatment upregulates V-ATPase and P-ATPase activity.25 This energizes Na+ efflux from the cytosol mediated by Na+/H+ exchangers at the plasma membrane and the tonoplast.24,26 Therefore downregulation of H+ pumps at both membranes in the cax3 mutant is likely to perturb the ability of the cell to remove Na+ (Fig. 2). Further analysis of cax mutants, P-ATPase mutants, and tonoplast-specific V-ATPase mutants will be required to determine whether many of the phenotypes resulting from lack of Ca2+/H+ exchange activity are due to altered Ca2+ transport or H+ transport.Open in a separate windowFigure 2Model of tonoplast Ca2+/H+ exchanger interaction with H+ pumps in response to salt stress. (A) In response to NaCl treatment, an elevation in cytosolic Ca2+ will occur, possibly due to vacuolar Ca2+ release.3 Increased CAX3-mediated Ca2+/H+ exchange activity14 will sequester excess Ca2+ into the vacuole. CAX3 may be involved in the generation of a specific Ca2+ signature that is recognised by the cell to mediate downstream stress responses. In addition, salt stress will lead to upregulation of H+ pumps at both the plasma membrane and the tonoplast (P-ATPase and V-ATPase)25 which will in turn energize Na+/H+ exchange activity encoded by SOS1 and NHX1, promoting Na+ efflux from the cell. Increased V-ATPase activity may also upregulate Ca2+/H+ exchange. Activity of SOS1 requires activation by the kinase SOS224 which may also regulate tonoplast Na+/H+ exchange and V-ATPase activity.23,24 (B) In a cax3 knockout mutant experiencing salt stress, the cytosolic Ca2+ elevation may be sustained due to reduced vacuolar Ca2+ sequestration and normal salinity-induced Ca2+ signalling pathways may be perturbed. Lack of CAX3 downregulates both P-ATPase and V-ATPase activity14 thereby reducing energization of the plasma membrane and tonoplast Na+/H+ exchangers and reducing Na+ efflux from the cell. Some energization of H+-coupled processes at the vacuole may be maintained by residual H+-pyrophosphatase (V-PPase) activity.The phenomenon observed between tonoplast Ca2+/H+ exchangers and H+ pumps at both the tonoplast and plasma membranes, suggesting a co-ordinate regulation between several transporters, is not solely restricted to this family of transporters. It is a common observation emerging from recent research on the manipulation of tonoplast transporters. Several labs have reported unpredictable phenotypes associated with ectopic expression of tonoplast proteins.2628 Until we understand the significance of these types of unexpected interactions, it is naïve to believe that engineering plants will provide predictable results.  相似文献   

7.
8.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

9.
Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH) to Arabidopsis roots results in a massive efflux of K+ from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K+ loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K+ homeostasis. We also observed a comparative reduction in K+ efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.Key words: compatible solutes, hydroxyl radical, potassium efflux, reactive oxygen species, salt stressReactive oxygen species (ROS) are continuously produced as by-products of various metabolic pathways.1 Under unstressed steady-state conditions, cellular ROS levels are kept in check by the sophisticated antioxidant defence system.2 However, under adverse environmental conditions, the balance between ROS production and its subsequent scavenging may be perturbed, leading to a rapid increase in ROS levels.3 Although significant progress has been made in defining ROS as a major signalling agent in plants,3 ROS can react with a large variety of biomolecules, causing lipid peroxidation and impairing membrane integrity.4,5 One such abiotic stress is salt stress,6 with ROS generation occurring within minutes of salt application.7 Alleviation of oxidative damage may be, therefore, an important strategy of plant salt tolerance.8One of the earliest measurable responses to salt stress is a massive K+ efflux from plant roots.9,10 Such K+ efflux is initiated within seconds of acute salt stress and may last for several hours11,12 reducing the intracellular K+ pool13,14 and significantly impairing cell metabolism. Consistent with the key role of K+ homeostasis in salt tolerance mechanisms15 a reduction of K+ efflux correlates with increased salt tolerance.11,12We have previously reported that hydroxyl radical (OH) application to Arabidopsis roots also results in a rapid efflux of K+ from the epidermis.16 In this report, we find a similar K+ efflux response.17 As is the case for salt stress,9 we found that membrane depolarisation could be responsible for a substantial part of this efflux. However, an observed discrepancy between the membrane depolarisation and the pattern of K+ efflux indicates that voltage-dependence is not the only factor influencing K+ loss from the root cells after oxidative stress. Demidchik et al.16 demonstrated that stress-induced K+ efflux could be mediated by activation of K+ outward rectifying channels directly by OH. This direct effect on K+ transporters could also account for our observed delay before the peak efflux of K+ is measured, indicating that a certain amount of time is required before maximal direct damage by OH to transporters occurs. Because both K+ channel blockers and non-selective cation channel blockers reduce this efflux, it indicates non-specificity in OH attack. Furthermore, combinations of these channel blockers were effective in reducing K+ efflux implying that, at least in the short term, the damaging effects of OH is due to compromising the transporter systems as opposed to lipid peroxidation. Certainly, K+ channels harbour reactive groups, thus are expected to be sensitive to ROS.18We have previously shown that the exogenous application of low concentrations of a variety of compatible solutes reduces the salt-induced K+ efflux.19,20 Plants, when confronted with a saline environment, respond with a significant elevation in their compatible solute levels. This ameliorates the detrimental effects of salinity.21 However, their original proposed role in cellular osmoregulation is under question: their concentration in transgenic plants overexpressing osmolyte biosynthetic genes is not significant for osmotic adjustment, despite showing improved salt tolerance.8 Furthermore, one hallmark of the detoxification effect is its lack of specificity, that is, transgenic plants have increased tolerance not only to high salt, but also to drought, cold and heat shock,22,23 stresses that also result in ROS production.3 Certainly, ecotopic expression studies suggest that compatible solutes increase stress tolerance by protection of membranes and proteins against ROS.6We show that in this work that exogenous application of low concentrations of a range of compatible solutes significantly reduces OH-induced K+ efflux,17 a similar effect to that we reported after salt application to barley roots19 and also observed in Arabidopsis (Fig. 1). Interestingly, we found that not only known free-radical scavenging osmolytes,24 but also glycine betaine, previously found to be non-effective in ROS scavenging,24 were effective in reducing OH-induced K+ efflux. Indeed, glycine betaine showed a greater mitigation of OH-induced K+ efflux compared to that induced by 50 mM NaCl (Fig. 1). However, it is open to speculation as to whether this mitigation is via direct channel blocking, a direct protection of ion channel proteins or by some other protective mechanism.Open in a separate windowFigure 1Effects of exogenous supply of compatible solutes on net peak K+ efflux after application of either 1 mM Cu/a or 50 mM NaCl. Roots were preincubated for 1 h in 5 mM concentration of a number of compatible solutes prior to treatment, Mean ± SE (n = 6-8).In our further investigations we have found that salt-tolerant barley show a reduced ROS-induced K+ efflux compared to sensitive varieties.25 This superior ability of salt-tolerant barley cultivars of preventing K+ loss further indicates a possible causal link between salt and oxidative stress tolerance. We propose that upon the imposition of salt stress, the instantaneously resulting membrane depolarisation9 results in activation of depolarisation activated K+ outward-rectifying channels, leading to the initial massive K+ efflux. Over the longer term, ROS levels within the plant cell increase,7 resulting in direct damage to K+ transporters and the longer-term sustained loss of K+ from the cell. Due to mitigation of both NaCl- and OH-induced K+ efflux by compatible solutes, we propose that one of their primary amelioratory effects is through reducing the damaging effects of salt-produced ROS on K+ transporter, and by this means, reducing the effects of stress damage. Whether this amelioration is achieved through free-radical scavenging or due to a direct protection of membrane transports warrants further investigation.  相似文献   

10.
11.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.Key words: cell adhesion, membrane protein, integrin, platelet, transmembrane complex, transmembrane signalingThe communication of biological signals across the plasma membrane is fundamental to cellular function. The ubiquitous family of integrin adhesion receptors exhibits the unusual ability to convey signals bi-directionally (outside-in and inside-out signaling), thereby controlling cell adhesion, migration and differentiation.15 Integrins are Type I heterodimeric receptors that consist of large extracellular domains (>700 residues), single-pass transmembrane (TM) domains, and mostly short cytosolic tails (<70 residues). The activation state of heterodimeric integrins is correlated to the association state of the TM domains of their α and β subunits.610 TM dissociation initiated from the outside results in the transmittal of a signal into the cell, whereas dissociation originating on the inside results in activation of the integrin to bind ligands such as extracellular matrix proteins. The elucidation of the role of the TM domains in integrin-mediated adhesion and signaling has been the subject of extensive research efforts, perhaps commencing with the demonstration that the highly conserved GFFKR sequence motif of α subunits (Fig. 1), which closely follows the first charged residue on the intracellular face, αIIb(K989), constrains the receptor to a default low affinity state.11 Despite these efforts, an understanding of this sequence motif had not been reached until such time as the structure of the αIIb TM segment was determined.12 In combination with the structure of the β3 TM segment13 and available mutagenesis data,6,9,10,14,15 this has allowed the first correct prediction of the overall association of an integrin αβ TM complex.12 The predicted association was subsequently confirmed by the αIIbβ3 complex structure determined in phospholipid bicelles,16 as well as by the report of a similar structure based on molecular modeling using disulfide-based structural constraints.17 In addition to the structures of the dissociated and associated αβ TM domains, their membrane embedding was defined12,13,16,18,19 and it was experimentally recognized that, in the context of the native receptor, the TM complex is stabilized by the inactive, resting ectodomain.16 These advances in integrin membrane structural biology are complemented by the recent structures of a resting integrin ectodomain and an activating talin/β cytosolic tail complex that overlap with the αβ TM complex,20,21 allowing detailed insight into integrin bi-directional TM signaling.Open in a separate windowFigure 1Amino acid sequence of integrin αIIb and β3 transmembrane segments and flanking regions. Membrane-embedded residues12,13,16,18,19 are enclosed by a gray box. Residues 991–995 constitute the highly conserved GFFKR sequence motif of integrin α subunits.  相似文献   

12.
13.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

14.
15.
Long chain bases or sphingoid bases are building blocks of complex sphingolipids that display a signaling role in programmed cell death in plants. So far, the type of programmed cell death in which these signaling lipids have been demonstrated to participate is the cell death that occurs in plant immunity, known as the hypersensitive response. The few links that have been described in this pathway are: MPK6 activation, increased calcium concentrations and reactive oxygen species (ROS) generation. The latter constitute one of the more elusive loops because of the chemical nature of ROS, the multiple possible cell sites where they can be formed and the ways in which they influence cell structure and function.Key words: hydrogen peroxide, long chain bases, programmed cell death, reactive oxygen species, sphinganine, sphingoid bases, superoxideA new transduction pathway that leads to programmed cell death (PCD) in plants has started to be unveiled.1,2 Sphingoid bases or long chain bases (LCBs) are the distinctive elements in this PCD route that naturally operates in the entrance site of a pathogen as a way to contend its spread in the plant tissues.2,3 This defense strategy has been known as the hypersensitive response (HR).4,5As a lately discovered PCD signaling circuit, three connected transducers have been clearly identified in Arabidopsis: the LCB sphinganine (also named dihydrosphingosine or d18:0); MPK6, a mitogen activated kinase and superoxide and hydrogen peroxide as reactive oxygen species (ROS).1,2 In addition, calcium transients have been recently allocated downstream of exogenously added sphinganine in tobacco cells.6Contrary to the signaling lipids derived from complex glycerolipid degradation, sphinganine, a metabolic precursor of complex sphingolipids, is raised by de novo synthesis in the endoplasmic reticulum to mediate PCD.1,2 Our recent work demonstrated that only MPK6 and not MPK3 (commonly functionally redundant kinases) acts in this pathway and is positioned downstream of sphinganine elevation.2 Although ROS have been identified downstream of LCBs in the route towards PCD,1 the molecular system responsible for this ROS generation, their cellular site of formation and their precise role in the pathway have not been unequivocally identified. ROS are produced in practically all cell compartments as a result of energy transfer reactions, leaks from the electron transport chains, and oxidase and peroxidase catalysis.7Similar to what is observed in pathogen defense,3 increases in endogenous LCBs may be elicited by addition of fumonisin B1 (FB1) as well; FB1 is a mycotoxin that inhibits ceramide synthase. This inhibition results in an accumulation of its substrate, sphinganine and its modified forms, leading to the activation of PCD.1,2,8 The application of FB1 is a commonly used approach for the study of PCD elicitation in Arabidopsis.1,2,911An early production of ROS has been linked to an increase of LCBs. For example, an H2O2 burst is found in tobacco cells after 2–20 min of sphinganine supplementation,12 and superoxide radical augmented in the medium 60 min after FB1 or sphinganine addition to Arabidopsis protoplasts (Fig. 1A). In consonance with this timing, both superoxide and H2O2 were detected in Arabidopsis leaves after 3–6 h exposure to FB1 or LCBs.1 However, the source of ROS generation associated with sphinganine elevation seems to not be the same in both species: in tobacco cells, ROS formation is apparently dependent on a NADPH oxidase activity, a ROS source consistently implicated in the HR,13,14 while in Arabidopsis, superoxide formation was unaffected by diphenyliodonium (DPI), a NADPH oxidase inhibitor (Fig. 1A). It is possible that the latter oxidative burst is due to an apoplastic peroxidase,15 or to intracellular ROS that diffuse outwards.16,17 These results also suggest that both tobacco and Arabidopsis cells could produce ROS from different sources.Open in a separate windowFigure 1ROS are produced at early and long times in the FB1-induced PCD in Arabidopsis thaliana (Col-0). (A) Superoxide formation by Arabidopsis protoplasts is NADPH oxidase-independent and occurs 60 min after FB1 or sphinganine (d18:0) exposure. Protoplasts were obtained from a cell culture treated with cell wall lytic enzymes. Protoplasts were incubated with 10 µM FB1 or 10 µM sphinganine for 1 h. Then, cells were vacuum-filtered and the filtrate was used to determine XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, disodium salt] reduction as described in references 28 and 29. DPI was used at 50 µM. (B) H2O2 formation in Arabidopsis wt and lcb2a-1 mutant in the presence and absence of FB1. Arabidopsis seedlings were exposed to 10 µM FB1 and after 48 h seedlings were treated with DA B (3,3-diaminobencidine) to detect H2O2 according to Thordal-Christensen et al.30It has been suggested that the H2O2 burst associated with the sphinganine signaling pathway leads to the expression of defense-related genes but not to the PCD itself in tobacco cells.12 It is possible that ROS are involved in the same way in Arabidopsis, since defense gene expression is also induced by FB1 in Arabidopsis.9 In this case, it will be important to define how the early ROS that are DPI-insensitive could contribute to the PCD manifestation mediated by sphinganine.The generation of ROS (4–60 min) found in Arabidopsis was associated to three conditions: the addition of sphinganine (Fig. 1A), FB1 (Fig. 1A) or pathogen elicitors.15 This is consistent with the MPK6 activation time, which is downstream of sphinganine elevation and occurs as early as 15 min of FB1 or sphinganine exposure.2 All of them are events that appear as initial steps in the relay pathway that produces PCD.In order to explore a possible participation of ROS at more advanced times of PCD progression, we detected in situ H2O2 formation in Arabidopsis seedlings previously exposed to FB1 for 48 h. As shown in Figure 1B, formation of the brown-reddish precipitate corresponding to the reaction of H2O2 with 3,3′-diaminobenzidine (DAB) was only visible in the FB1-exposed wild type plants, as compared to the non-treated plants. However, when lcb2a-1 mutant seedlings were used, FB1 exposure had a subtle effect in ROS formation. This mutant has a T-DNA insertion in the gene encoding subunit LCB2a from serine palmitoyltransferase (SPT), which catalyzes the first step in sphingolipid synthesis18 and the mutant has a FB1-resistant phenotype.2 These results indicate that mutations in the LCB11 and LCB2a2 genes (coding for the subunits of the heterodimeric SPT) that lead to a non-PCD phenotype upon the FB1 treatment, are unable to produce H2O2. In addition, they suggest that high levels of hydrogen peroxide are produced at advanced times in the PCD mediated by LCBs in Arabidopsis.Exposure of Arabidopsis to an avirulent strain of Pseudomonas syringae produces an endogenous elevation of LCBs as a way to implement defense responses that include HR-PCD.3 In this condition, we clearly detected H2O2 formation inside chloroplasts (Fig. 2A). When ultrastructure of the seedlings tissues exposed to FB1 for 72 h was analyzed, integrity of the chloroplast membrane system was severely affected in Arabidopsis wild-type seedlings exposed to FB1.2 Therefore, we suggest that ROS generation-LCB induced in the chloroplast could be responsible of the observed membrane alteration, as noted by Liu et al. who found impairment in chloroplast function as a result of H2O2 formation in this organelle from tobacco plants. Interestingly, these plants overexpressed a MAP kinase kinase that activated the kinase SIPK, which is the ortholog of the MPK6 from Arabidopsis, a transducer in the PCD instrumented by LCBs.2Open in a separate windowFigure 2Conditions of LCBs elevation produce H2O2 formation in the chloroplast and perturbation in the membrane morphology of mitochondria. (A) Exposure of Arabidopsis leaves to the avirulent strain Pseudomonas syringae pv. tomato DC3000 (avrRPM1) (or Pst avrRPM1) induces H2O2 formation in the chloroplast. Arabidopsis leaves were infiltrated with 1 × 108 UFC/ml Pst avrRPM1 and after 18 h, samples were treated to visualize H2O2 formation with the DAB reaction. Controls were infiltrated with 10 mM MgCl2 and then processed for DAB staining. Then, samples were analyzed in an optical photomicroscope Olympus Provis Model AX70. (B) Effect of FB1 on mitochondria ultrastructure. Wild type Arabidopsis seedlings were treated with FB1 for 72 h and tissues were processed and analyzed according to Saucedo et al.2 Ch, chloroplast; M, mitochondria; PM, plasma membrane. Arrows show mitochondrial cisternae. Bars show the correspondent magnification.In addition, we have detected alterations in mitochondria ultrastructure as a result of 72 h of FB1 exposure (Fig. 2B). These alterations mainly consist in the reduced number of cristae, the membrane site of residence of the electron transport complexes. In this sense, it has been shown that factors that induce PCD such as the victorin toxin, methyl jasmonate and H2O2 produce alterations in mitochondrial morphology.2022 In fact, some of these studies propose that ROS are formed in the mitochondria and then diffuse to the chloroplasts.2224It is reasonable to envisage that damage of the membrane integrity of these two organelles reflects the effects of vast amounts of ROS produced by the electron transport chains.25,26 Recent evidence supports the destruction of the photosynthetic apparatus associated to the generation of ROS in the HR.26 At this time of PCD progression, ROS could be contributing to shut down the energy machinery in the cell, which ultimately would become the point of no-return of PCD27 as part of the execution program of the cell death mediated by LCBs.In conclusion, we propose that ROS can display two different functional roles in the PCD process driven by LCBs. These roles depend on the time of ROS expression, the cellular site where they are generated, the enzymes that produce them, and the magnitude in which they are formed.  相似文献   

16.
17.
18.
19.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号