首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immune system is a key component of tumorigenesis, with the latter promoting the development of cancer, its progression and metastasis. In fact, abundant infiltration of tumor-associated macrophages (TAM), which are M2-like macrophages, has been associated with a poor outcome in most types of cancers. Here, we show that lactate produced by murine melanoma B16F10 cells induces an M2-like profile in cultured macrophages. Further, we demonstrate that clotrimazole (CTZ), an off-target anti-tumor drug, abolishes lactate effects on the activation of macrophages and induces the expression of M1-like markers. We show that clotrimazole has cytotoxic effects on tumor cells by negatively modulating PI3K, which inhibits glycolytic metabolism and leads to a diminishing lactate production by these cells. These effects are more pronounced in cancer cells exposed to conditioned media of M2-polarized macrophages. Moreover, clotrimazole inhibits tumor growth in a murine model of implanted melanoma, reduces lactate content in a tumor microenvironment and decreases vascular endothelial growth factor expression. Finally, clotrimazole drastically diminishes TAM infiltration in the tumors, thereby inducing M1 polarization. Collectively, these findings identify a new antitumor mechanism of clotrimazole by modulating the tumor microenvironment (TME), particularly the activation and viability of TAM.  相似文献   

2.
3.
Dendritic cells (DCs) are the most efficient antigen-presenting cells and play a key role in a cellular antitumor immune response. In this study we investigated the exact localization of DCs within colorectal tumors and their relationship to tumor-infiltrating lymphocytes as well as clinical outcome of the patients. Primary tumor specimens of 104 patients with a diagnosis of colorectal cancer were identified retrospectively and analyzed with the dendritic cell markers S-100 protein and human leukocyte antigens (HLA) class II. The markers were individually combined with laminin as a second marker to facilitate the observation of the different tumor localizations. S-100 or HLA class II positive cells were found in the three different compartments of colorectal tumors: tumor epithelium, tumor stroma, and advancing tumor margin, but mainly present in tumor stroma and advancing tumor margin. S-100-positive tumor-infiltrating DCs in direct contact with tumor cells, i.e., in tumor epithelium, significantly correlated to the intraepithelial infiltration of CD4+ (p=0.02) and CD8+ (p=0.01) lymphocytes. High HLA class II+ cell infiltration in the tumor stroma correlated to a lower intraepithelial infiltration of CD8+ (p=0.02) lymphocytes. High intraepithelial infiltration of S-100-positive DCs suggested increased disease-free survival, but was not statistically significant, while high amounts of HLA class II+ cells in the tumor stroma correlated with an adverse survival outcome. Our results show that the infiltration of DCs in colorectal cancer, depending on both location and type of marker, is correlated with local immune interactions and patient prognosis, suggesting a central role for DCs in controlling local tumor immunity.  相似文献   

4.
The biological significance of the almost constant presence of macrophages in the tumoral microenvironment is an issue debated by several authors. The major difficulty in understanding the role played by tumor-associated macrophages (TAMs) in tumor progression is due to the contrasting effects of TAMs found in different studies. In addition, there is a limited information on which of the many biological activities expressed by TAMs are critical in inducing stimulatory or inhibitory effect on tumor growth. The aim of our study was: (a) to explore to what extent cyclo-oxygenase-2 (COX-2) in TAMs associated with human melanoma is expressed at different stages of tumor progression; and (b) to explore whether COX-2 expression in TAMs is stimulated by melanoma cells. In order to answer this question, we determined COX-2 positive TAMs associated with cutaneous melanocytic nevi, in situ, invasive and metastatic melanoma. In addition, we investigated whether COX-2 is expressed in peritoneal thioglycollate-elicited macrophages after co-cultivation with murine B16 melanoma cells. We found that COX-2-positive TAMs, as revealed by immunohistochemical analysis, were rare in common nevi and "dysplastic nevi", but present in a high percentage in in situ and thin melanoma. COX-2-positive TAMs were also found in more advanced tumors and metastatic melanoma, although at a significantly lower percentage in these latter. The in vitro protocol revealed that COX-2 was expressed in peritoneal macrophages upon contact with B16 murine melanoma cells, but not with normal murine fibroblasts. On the whole, the results of in vivo and in vitro studies suggest that COX-2 expressed in TAMs appears to act as an effective biomarker of melanoma progression, and melanoma cells themselves might stimulate COX-2 in macrophages.  相似文献   

5.
Tumor immunotherapy, such as PD-1/PD-L1 blockade, has shown promising clinical efficacy in patients with various types of tumors. However, the response to PD-1/PD-L1 blockade in a majority of malignancies is limited, indicating an urgent need for a deeper understanding of the mechanisms of PD-1/PD-L1 axis-mediated tumor tolerance. As the most abundant immune cells in the tumor stroma, macrophages display multiple phenotypes and functions in response to the stimuli of the tumor microenvironment. PD-1/PD-L1 has been demonstrated to be highly expressed in tumor-associated macrophages (TAMs), and TAM polarization has been shown to be important during tumor progression. In this review, we outline the relationship between TAM PD-1/PD-L1 expression and polarizations, summarize the involvement of M2 TAMs in PD-1/PD-L1-mediated T-cell exhaustion, and discuss improved approaches for overcoming PD-1/PD-L1 blockade resistance by inducing M2/M1 switching of TAMs.  相似文献   

6.
Obesity, and in particular visceral obesity, has been associated with an increased risk of developing cancers as well as higher rates of mortality following diagnosis. The impact of obesity on adipose-derived stromal cells (ASC), which contribute to the formation of tumor stroma, is unknown. Here we hypothesized that visceral source and diet-induced obesity (DIO) changes the ASC phenotype, contributing to the tumor promoting effects of obesity. We found that ASC isolated from subcutaneous (SC-ASC) and visceral (V-ASC) white adipose tissue(WAT) of lean(Le) and obese(Ob) mice exhibited similar mesenchymal cell surface markers expression, and had comparable effects on ovarian cancer cell proliferation and migration. Obese and visceral derived ASC proliferated slower and exhibited impaired differentiation into adipocytes and osteocytes in vitro as compared to ASC derived from subcutaneous WAT of lean mice. Intraperitoneal co-injection of ovarian cancer cells with obese or visceral derived ASC, but not lean SC-ASC, increased growth of intraperitoneal ID8 tumors as compared to controls. Obese and V-ASC increased stromal infiltration of inflammatory cells, including CD3+ T cells and F4/80+ macrophages. Obese and visceral derived ASC, but not lean SC-ASC, increased expression of chemotactic factors IL-6, MIP-2, and MCP-1 when cultured with tumor cells. Overall, these results demonstrate that obese and V-ASC have a unique phenotype, with more limited proliferation and differentiation capacity but enhanced expression of chemotactic factors in response to malignant cells which support infiltration of inflammatory cells and support tumor growth and dissemination.  相似文献   

7.
曹春雨  王清  王艳林 《生命科学》2013,(11):1105-1108
肿瘤相关巨噬细胞是肿瘤组织局部浸润的巨噬细胞,在肿瘤组织微环境中,这些巨噬细胞发生M2型极化,从而发挥免疫抑制效应,促进肿瘤增殖。而M2型极化的肿瘤相关巨噬细胞也能够被再次诱导逆向极化形成具有抗肿瘤效应的M1型肿瘤相关巨噬细胞,激发机体产生特异性抗肿瘤免疫应答。促进肿瘤相关巨噬细胞M1型极化由此成为当前抗肿瘤免疫防治研究的热点。将对有关肿瘤相关巨噬细胞极化的新进展进行综述,为抗肿瘤免疫研究提供新的思路。  相似文献   

8.
Recent results suggest that bone marrow (BM)-derived hematopoietic cells are major components of tumor stroma and play crucial roles in tumor growth and angiogenesis. An E-type prostaglandin is known to regulate angiogenesis. We examined the role of BM-derived cells expressing an E-type prostaglandin receptor subtype (EP3) in tumor-induced angiogenesis and tumor growth. The replacement of wild-type (WT) BM with BM cells (BMCs) from green fluorescent protein (GFP) transgenic mice revealed that the stroma developed via the recruitment of BMCs. Selective knockdown of EP3 by recruitment of genetically modified BMCs lacking EP3 receptors was performed by transplantation of BMCs from EP3 knockout (EP3−/−) mice. Tumor growth and tumor-associated angiogenesis were suppressed in WT mice transplanted with BMCs from EP3−/− mice, but not in mice transplanted with BMCs from either EP1−/−, EP2−/−, or EP4−/− mice. Immunohistochemical analysis revealed that vascular endothelial growth factor (VEGF) expression was suppressed in the stroma of mice transplanted with BMCs from EP3−/− mice. EP3 signaling played a significant role in the recruitment of VEGFR-1- and VEGFR-2-positive cells from the BM to the stroma. These results indicate that the EP3 signaling expressed in bone marrow-derived cells has a crucial role in tumor-associated angiogenesis and tumor growth with upregulation of the expression of the host stromal VEGF together with the recruitment of VEGFR-1/VEGFR-2-positive. The present study suggests that the blockade of EP3 signaling and the recruitment of EP3-expressing stromal cells may become a novel strategy to treat solid tumors.  相似文献   

9.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

10.
Annexin A1 is a multi functional molecule which is involved in inflammation, innate and adaptive immune systems, tumor progression and metastasis. We have previously showed the impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1 knockout mice. While tumor is a piece of heterogeneous mass including not only malignant tumor cells but also the stroma, the importance of the tumor stroma for tumor progression and metastasis is becoming increasingly clear. The tumor stroma is comprised by various components including extracellular matrix and non-malignant cells in the tumor, such as endothelial cells, fibroblasts, immune cells, inflammatory cells. Based on our previous finding of pro-angiogenic functions for annexin A1 in vascular endothelial cell sprouting, wound healing, tumor growth and metastasis, and the previously known properties for annexin A1 in immune cells and inflammation, this study hypothesized that annexin A1 is a key functional player in tumor development, linking the various components in tumor stroma by its actions in endothelial cells and immune cells. Using systems analysis programs commercially available, this paper further compared the gene expression between tumors from annexin A1 wild type mice and annexin A1 knockout mice and found a list of genes that significantly changed in the tumor stroma that lacked annexin A1. This revealed annexin A1 to be an effective regulator in tumor stroma and suggested a mechanism that annexin A1 affects tumor development and metastasis through interaction with the various components in the microenvironment surrounding the tumor cells.  相似文献   

11.
There is an urgent need to develop novel markers of pancreatic cancer to facilitate early diagnosis. Pancreatic carcinoma is characterized by marked stroma formation with a high number of infiltrating tumor-associated macrophages (TAMs) that originate from circulating mononuclear cells (MNCs). We hypothesized that differential analysis of protein expression and phosphorylation in circulating MNCs from healthy nude mice and nude mice bearing orthotopic human pancreatic cancer would identify a surrogate marker of pancreatic cancer. These differences were analyzed by two-dimensional gel electrophoresis followed by Western blot analysis using antibody against phosphorylated tyrosine proteins (pY). Protein and phosphorylated protein spots of interest were identified by mass spectrometry and validated by Western blot analysis as candidate markers for pancreatic cancer. We found that the expression and phosphorylation of Src family proteins were significantly higher in circulating MNCs from mice bearing pancreatic cancer than in circulating MNCs from healthy mice. TAMs in mice with pancreatic tumors also had higher Src family protein expression and phosphorylation than resident macrophages in the pancreas of healthy mice. The expression and phosphorylation of Src family proteins were correlated with tumor weight; however, increased Src expression and phosphorylation also occurred in MNCs from mice with chronic pancreatitis. This is the first report to explore novel pancreatic tumor markers in circulating MNCs. Although the specificity of the marker for pancreatic cancer was low, it could be used to monitor the disease or to select high-risk patients with chronic pancreatitis.  相似文献   

12.
Macrophages, the most heterogeneous cells of the hematopoietic system and the giant eaters of the immune system that present either as tissue-resident cells or infiltrated immune cells, eliminate foreign pathogens and microbes and also play different physiological roles to maintain the body's immune response. In this review, we basically provide a broad overview of macrophages from their origin, functional diversity to M1-M2 polarization, specialized markers, and their role as important therapeutic targets in different diseases based on the current research and evidence. Apart from this, we have precisely discussed about tumor-associated macrophages (TAMs) and their role in tumor progression and newly discovered lesser-known markers of TAMs that could be used as potential therapeutic targets to treat life-threatening diseases. It is really very important to understand the diversity of macrophages to develop TAM-modulating strategies to activate our own immune system against diseases and to overcome immune resistance.  相似文献   

13.
Tumor growth is associated with angiogenesis and inflammation and the endogenous lipid, platelet activating factor (PAF), is a pro-inflammatory and pro-angiogenic mediator. We therefore measured tumor growth, angiogenesis and inflammation in normal (WT) mice and those lacking the receptor for PAF, through gene deletion (PAFR-KO). Growth of solid tumors derived from colon 26 cells was not altered but that from Ehrlich cells was markedly (5-fold) increased in the PAFR-KO mice, relative to the WT strain. Angiogenesis, as tumor content of VEGF or hemoglobin, was increased in both tumors from the mutant strain. Inflammation, as neutrophil and macrophage accumulation and chemokine (CXCL2 and CCL2) content of tumors, was decreased or unchanged in the tumors implying an overall decrease in the inflammatory response in the PAFR-KO strain. We also assessed growth of the Ehrlich tumor in its ascites form, after i.p. injection. Here growth (ascites volume) was inhibited by about 30%, but neutrophil and macrophage numbers were increased in the ascites fluid from the PAFR-KO mice. Angiogenesis in the peritoneal wall, which is not invaded by the tumor cells, was increased but leukocyte infiltration decreased in the mutant strain. Our results show, unexpectedly, that tumor-induced angiogenesis was increased in mice lacking response to PAF, from which we infer that in normal (WT) mice, PAF is anti-angiogenic. Further, although growth was still associated with angiogenesis in PAFR-KO mice, growth was not correlated with inflammation (leukocyte accumulation).  相似文献   

14.
Immunization can prevent tumor growth, but the effector cells directly responsible for tumor cell killing in immunized hosts remain undetermined. The present study compares tumor grafts that progress in naive syngeneic rats with the same grafts that completely regress in hosts preimmunized with an immunogenic cell variant. The progressive tumors contain only a few macrophages that remain at the periphery of the tumor without direct contact with the cancer cells. These macrophages do not kill tumor cells in vitro. In contrast, tumors grafted in immunized hosts and examined at the beginning of tumor regression show a dramatic infiltration with mature macrophages, many of them in direct contact with the cancer cells. These macrophages are strongly cytotoxic for the tumor cells in vitro. In contrast to macrophages, tumor-associated lymphocytes are not directly cytotoxic to the tumor cells, even when obtained from tumor-immune rats. However, CD4(+) and CD8(+) T cells prepared from the regressing tumors induce tumoricidal activity in splenic macrophages from normal or tumor-bearing rats and in macrophages that infiltrate progressive tumors. These results strongly suggest that the main tumoricidal effector cells in preimmunized rats are macrophages that have been activated by adjacent tumor-immune lymphocytes.  相似文献   

15.
Burkitt's lymphoma (BL) is typified by frequent tumor cell apoptosis and significant macrophage infiltration. Since BL cells have an inherent tendency to undergo apoptosis at a high rate, we reasoned that macrophages in BL are functionally enhanced in at least two activities that have implications for tumor pathogenesis: 1) engulfment of apoptotic cells, an anti-inflammatory process known to suppress immune responses, and 2) production of BL cell survival factors that limit the extent of tumor cell apoptosis. In this study, we show that the microenvironment of BL is rich in the pleiotropic cytokine IL-10, which can be produced by both tumor cells and macrophages, and that IL-10-activated human macrophages have enhanced capacity to engulf apoptotic cells in vitro. This was found to be dependent on the macrophage tethering receptor of apoptotic cells, CD14. Furthermore, IL-10-activated macrophages were found to produce markedly higher levels of the B cell survival factor, B cell-activating factor of the TNF family/B lymphocyte stimulator (BAFF/BLyS) than macrophages matured in the absence of IL-10. Coculture of macrophages with BL cells further enhanced BAFF secretion. Significantly, we show that enhancement of BL cell survival by IL-10-activated macrophages is mediated by a BAFF-dependent component and that BAFF is produced at high levels by tumor-associated macrophages in situ. These results indicate that macrophages, regulated by IL-10, have the potential to promote BL pathogenesis, first, through suppression of antitumor immunity following enhanced engulfment of apoptotic tumor cells and, second, through increased production of tumor cell growth/survival factors.  相似文献   

16.
Carcinomas are composed of parenchymal and stromal elements, and the malignant behavior is principally dictated by the cancer cells. However, the malignant tumors not merely grow into a preexisting interstitial tissue, but they actively form a new stroma and modify their composition. Thus, the tumor stroma is significantly different from that of the neighboring tissues. Cancer cells may alter their stroma by cell-to-cell contact, soluble factors or by modification of the extracellular matrix (ECM), they induce myofibroblast differentiation and govern the desmoplastic stroma reaction. On the other hand, the stromal cells (especially the myofibroblasts) are able to modify the phenotype, invasiveness, metastatic capacity of carcinomas, typically promoting the progression. Regarding pancreatic cancer, the pancreatic stellate cells (PSCs) seem to be the key elements in the cross-talk between the parenchymal cells and the desmoplastic stroma. The tumor stroma is also rich in tumor-associated macrophages (TAM), but their role in the malignant process is contradictory and may be different in various tumor types, but most studies suggest a negative impact on the tumor growth. The relationship between the parenchymal and stromal elements is highly complex, they mutually alter their characteristics. Because the neostroma of the carcinomas largely seems to promote the invasiveness of the malignant tumors, novel therapeutic strategies are being evaluated targeting the stromal elements, with some encouraging, but still fragmentary results.  相似文献   

17.
Ocular infection with herpes simplex virus (HSV) results in a blinding immunoinflammatory stromal keratitis (SK) lesion. Early preclinical events include polymorphonuclear neutrophil (PMN) infiltration and neovascularization in the corneal stroma. We demonstrate here that HSV infection of the cornea results in the upregulation of the cyclooxygenase 2 (COX-2) enzyme. Early after infection, COX-2 was produced from uninfected stromal fibroblasts as an indirect effect of virus infection. Subsequently, COX-2 may also be produced from other inflammatory cells that infiltrate the cornea. The induction of COX-2 is a critical event, since inhibition of COX-2 with a selective inhibitor was shown to reduce corneal angiogenesis and SK severity. The administration of a COX-2 inhibitor resulted in compromised PMN infiltration into the cornea, as well as diminished corneal vascular endothelial growth factor levels, likely accounting for the reduced angiogenic response. COX-2 stimulation by HSV infection represents a critical early event accessible for therapy and the control of SK severity.  相似文献   

18.
Osteopontin (OPN) expression in tumors is associated with more aggressive tumor growth; however, several studies have suggested that OPN as a host protein can regulate tumor growth as well. OPN is produced by macrophages and T cells, and reportedly modifies macrophage function. Here, we have investigated the effect of OPN on macrophage function, and its role in host defense against tumor growth. OPN deficient (-/-) and wild-type (WT) peritoneal macrophages were assessed for their ability to mediate cytotoxicity of tumor cells. Thioglycollate-elicited peritoneal exudate cells (PEC) were stimulated in vitro with interferon-gamma and lipopolysaccharide. [(3)H]Thymidine-labeled ras-transformed tumor cells were then added and (3)H release and nitrite accumulation were measured. OPN -/- PEC exhibited as much as a 70% reduction in cytotoxicity as compared to WT PEC. Tumor cell OPN status, on the other hand, had little effect on the extent of cytotoxicity. Production of nitrite by the PEC correlated with their capacity to kill tumor cells. L-929 cells, which are relatively resistant to nitric oxide-induced cytotoxicity and sensitive to that effected by TNF-alpha, were killed equally well by wild-type and OPN-deficient PEC, suggesting that the effect of OPN is not mediated through TNF-alpha. No difference was seen in the cytotoxicity of resident macrophages from mice of different genotypes, indicating that the defect in the OPN-deficient macrophages may result from altered differentiation in vivo. In support of this idea, we show that the expression of the macrophage markers F4/80 in peritoneal cells and of Mac-2 in spleen cells is altered in OPN -/- mice as compared to WT. These data support the hypothesis that host-derived osteopontin may inhibit tumor growth and provide a mechanism for this effect.  相似文献   

19.
Infiltration of immune effector cells in tumors is critical for antitumor immune responses. However, what regulates immune cell infiltration of tumors remains to be identified. Stat3 is constitutively activated with high frequency in diverse cancers, promoting tumor cell growth and survival. Blocking Stat3 signaling in tumors in vivo results in tumor growth inhibition that involves killing of nontransfected tumor cells and infiltration of immune effector cells, suggesting that Stat3 activity in tumor cells might affect immune cell recruitment. However, dying tumor cells can also attract immune cells. In this study, we show in isogenic murine melanomas that natural Stat3 activity is associated with tumor growth and reduction of T cell infiltration. Blocking Stat3 signaling in the melanoma cells containing high Stat3 activity results in expression of multiple chemoattractants, leading to increased migration of lymphocytes, NK cells, neutrophils, and macrophages. In addition, blocking Stat3 triggers tumor cells to produce soluble factors capable of activating macrophage production of NO in vitro and in vivo. TNF-alpha and IFN-beta, which are secreted by Stat3-inhibited tumor cells, are able to activate macrophage NO production, whereas neutralizing TNF-alpha in the tumor supernatant from Stat3-blocked tumor cells abrogates nitrite production. Moreover, interrupting Stat3 signaling in tumor cells leads to macrophage-mediated, nitrite-dependent cytostatic activity against nontransduced tumor cells. These results suggest that tumor Stat3 activity affects recruitment of diverse immune effectors and it can be manipulated to activate the effector phase of innate immune responses.  相似文献   

20.
The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1β, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1β and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号