首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
文昌鱼特异的基因倍增   总被引:1,自引:0,他引:1  
王蔚  宿兵  王义权 《遗传》2005,27(1):143-149
进化生物学和发育生物学的结合产生了一门新兴学科——进化发育生物学,近年来该领域研究取得了丰硕的成果。头索动物文昌鱼是现存生物中最近似于脊椎动物直接祖先的生物,在与脊椎动物分化后形态改变很小,其基因组未曾经历大规模的基因组倍增,在一定程度上反映了脊椎动物祖先型基因组的特征,但在漫长的独立进化历程中基因组自身还是经历了一些变化。本文介绍了在几例在文昌鱼支系中独立发生的基因倍增事件(Hox; Evx; HNF-3; Calmodulin-like),有力地揭示了文昌鱼虽然与脊椎动物直接祖先极其接近,但其基因组有其自身特性,不能简单地将之等同于脊椎动物直接祖先。Abstract: The union of the two complementary disciplines, developmental biology and evolutionary biology resulted in a new division of evolutionary developmental biology, namely “Evo-Devo”. Recently, the research on this field has been fruitful in understanding the origin and development of vertebrates. The cephalochordate amphioxus, which remains in relatively invariant morphology since the divergence from the vertebrate lineage, is the closest living relative to vertebrates. The vertebrate-like simple body plan and preduplicative genome provide amphioxus genes the privilege to serve as key landmark to understand morphological evolution. However, the amphioxus genome has not escaped evolution. In this paper several examples of independent gene (Hox; Evx; HNF-3 and Calmodulin-like) duplications in the cephalochordate lineage were summarized. These particularities and oddities remind the fact that amphioxus is not an immediate ancestor of the vertebrates but ‘only’ the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

2.
Recently, Doolittle and Inkpen formulated a thought provoking theory, asserting that evolution by natural selection was responsible for the sideways evolution of two radically different kinds of selective units (also called Domains). The former entities, termed singers, correspond to the usual objects studied by evolutionary biologists (gene, genomes, individuals, species, etc.), whereas the later, termed songs, correspond to re‐produced biological and ecosystemic functions, processes, information, and memes. Singers perform songs through selected patterns of interactions, meaning that a wealth of critical phenomena might receive novel evolutionary explanations. However, this theory did not provide an empirical approach to study evolution in such a broadened context. Here, we show that analyzing songs and singers, using patterns of interaction networks as a common ontology for both, offers a novel, actionable, inclusive and mathematical way to analyze not only the re‐production but also the evolution and fitness of biological and ecosystemic interconnected processes.  相似文献   

3.
Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.  相似文献   

4.
Membrane transporters are essential for fundamental cellular functions and normal physiological processes. These molecules influence drug absorption and distribution, and play key roles in drug therapeutic effects. A primary goal of current research in drug discovery and development is to fully understand the interaction between transporters and drugs at both system level and individual level for personalized therapy. Pharmacogenomics studies the genetic basis of the individual variations in response to drug therapy, whereas systems biology provides the understanding of biological processes at the system level. The integration of pharmacogenomics with systems biology in membrane transporter study is necessary to solve complex problems in diseases and drug effects. Such integration provides insight to key issues of pharmacogenomics and systems biology of membrane transporters. These key issues include the correlations between structure and function, genotype and phenotype, and systematic interactions between different transporters, between transporters and other proteins, and between transporters and drugs. The exploration in these key issues may ultimately contribute to the personalized medicine with high efficacy but less toxicity, which is the overall goal of pharmacogenomics and systems biology.  相似文献   

5.
This essay provides an introduction to the terminology, concepts, methods, and challenges of image‐based modeling in biology. Image‐based modeling and simulation aims at using systematic, quantitative image data to build predictive models of biological systems that can be simulated with a computer. This allows one to disentangle molecular mechanisms from effects of shape and geometry. Questions like “what is the functional role of shape” or “how are biological shapes generated and regulated” can be addressed in the framework of image‐based systems biology. The combination of image quantification, model building, and computer simulation is illustrated here using the example of diffusion in the endoplasmic reticulum.  相似文献   

6.
7.
How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations.  相似文献   

8.
Journal of Structural and Functional Genomics - The major transitions in human evolution from prokaryotes toeukaryotes, from protozoans to metazoans, from the first animals tobilaterians and...  相似文献   

9.
Molecular evolution of the rice miR395 gene family   总被引:6,自引:1,他引:5  
  相似文献   

10.
Evolutionary change of the numbers of homeobox genes in bilateral animals   总被引:6,自引:0,他引:6  
It has been known that the conservation or diversity of homeobox genes is responsible for the similarity and variability of some of the morphological or physiological characters among different organisms. To gain some insights into the evolutionary pattern of homeobox genes in bilateral animals, we studied the change of the numbers of these genes during the evolution of bilateral animals. We analyzed 2,031 homeodomain sequences compiled from 11 species of bilateral animals ranging from Caenorhabditis elegans to humans. Our phylogenetic analysis using a modified reconciled-tree method suggested that there were at least about 88 homeobox genes in the common ancestor of bilateral animals. About 50-60 genes of them have left at least one descendant gene in each of the 11 species studied, suggesting that about 30-40 genes were lost in a lineage-specific manner. Although similar numbers of ancestral genes have survived in each species, vertebrate lineages gained many more genes by duplication than invertebrate lineages, resulting in more than 200 homeobox genes in vertebrates and about 100 in invertebrates. After these gene duplications, a substantial number of old duplicate genes have also been lost in each lineage. Because many old duplicate genes were lost, it is likely that lost genes had already been differentiated from other groups of genes at the time of gene loss. We conclude that both gain and loss of homeobox genes were important for the evolutionary change of phenotypic characters in bilateral animals.  相似文献   

11.
12.
Gene duplication and loss are predicted to be at least of the order of the substitution rate and are key contributors to the development of novel gene function and overall genome evolution. Although it has been established that proteins evolve more rapidly after gene duplication, we were interested in testing to what extent this reflects causation or association. Therefore, we investigated the rate of evolution prior to gene duplication in chordates. Two patterns emerged; firstly, branches, which are both preceded by a duplication and followed by a duplication, display an elevated rate of amino acid replacement. This is reflected in the ratio of nonsynonymous to synonymous substitution (mean nonsynonymous to synonymous nucleotide substitution rate ratio [Ka:Ks]) of 0.44 compared with branches preceded by and followed by a speciation (mean Ka:Ks of 0.23). The observed patterns suggest that there can be simultaneous alteration in the selection pressures on both gene duplication and amino acid replacement, which may be consistent with co-occurring increases in positive selection, or alternatively with concurrent relaxation of purifying selection. The pattern is largely, but perhaps not completely, explained by the existence of certain families that have elevated rates of both gene duplication and amino acid replacement. Secondly, we observed accelerated amino acid replacement prior to duplication (mean Ka:Ks for postspeciation preduplication branches was 0.27). In some cases, this could reflect adaptive changes in protein function precipitating a gene duplication event. In conclusion, the circumstances surrounding the birth of new proteins may frequently involve a simultaneous change in selection pressures on both gene-copy number and amino acid replacement. More precise modeling of the relative importance of preduplication, postduplication, and simultaneous amino acid replacement will require larger and denser genomic data sets from multiple species, allowing simultaneous estimation of lineage-specific fluctuations in mutation rates and adaptive constraints.  相似文献   

13.
汪浩  张锐  张娇  沈慧  戴锡玲  严岳鸿 《生物多样性》2019,27(11):1221-29
全基因组复制在动植物中普遍存在, 被认为是促进物种进化的重要动力之一。作为蕨类植物的单种科物种, 翼盖蕨(Didymochlaena trancatula)是真水龙骨类I的基部类群, 在蕨类中具有独特的演化地位。本研究基于高通量测序, 通过同义替换率(Ks)分析、相对定年分析揭示翼盖蕨的全基因组复制发生情况。Ks分析表明, 翼盖蕨至少经历了两次全基因组复制事件, 其中一次发生于59-62 million years ago (Mya), 另一次发生于90-94 Mya, 这两次全基因组复制事件分别和白垩纪第三纪的Cretaceous-Tertiary (C-T)大灭绝事件以及翼盖蕨的物种分化时间相吻合。进一步对两次全基因组复制保留的基因进行功能注释和富集分析, 结果显示与转录及代谢调控相关的基因优势被保留。翼盖蕨的全基因组复制事件可能促进了该物种的分化及其对极端环境的适应性。  相似文献   

14.
Li Y  Zhang L  Zhang D  Zhang X  Lu X 《遗传学报》2010,37(10):695-702
It has been shown that duplicate genes on the X chromosome evolve much faster than duplicate genes on autosomes in Drosophila melanogaster.However,whether this phenomenon is general and can be applied to other species is not known.Here we examined this issue in chicken that have heterogametic females(females have ZW sex chromosome).We compared sequence divergence of duplicate genes on the Z chromosome with those on autosomes.We found that duplications on the Z chromosome indeed evolved faster than those on autosomes and show distinct patterns of molecular evolution from autosomal duplications.Examination of the expression of duplicate genes revealed an enrichment of duplications on the Z chromosome having male-biased expression and an enrichment of duplications on the autosomes having female-biased expression.These results suggest an evolutionary trend of the recruitment of duplicate genes towards reproduction-specific function.The faster evolution of duplications on Z than on the autosomes is most likely contributed by the selective forces driving the fixation of adaptive mutations on Z.Therefore,the common phenomena observed in both flies and chicken suggest that duplicate genes on sex chromosomes have distinct dynamics and are more influenced by natural selection than antosomal duplications,regardless of the kind of sex determination systems.  相似文献   

15.
Genome evolution arises from two main ways of duplication and reduction. Fish specific genome duplication (FSGD) may have occurred before the radiation of the teleosts. Common carp (Cyprinus carpio L.) has been considered to be a tetraploid species, because of its chromosome numbers (2n=100) and its high DNA content. Using 69 microsatellite primer pairs, the variations were studied to better understand the genome evolution (genome duplication and diploidization) of common carp from a gynogenetic family. About 48% of primer pairs were estimated to amplify duplicates based on the number of PCR amplification per individual. Segregation patterns in the family suggested a partially duplicated genome structure and disomic inheritance. This indicates that the common carp is tetraploid and polyploidy occurred by allotetraploidy. Two primer pairs (HLJ021 and HLJ332) were estimated to amplify reduction based on the number of PCR amplification per individual. One allele in HLJ002 locus and HLJ332 locus was clearly lost in the gynogenetic family and the same as in six wild populations. Segregation patterns in the family suggested a partially diplodization genome structure. A hypothesis transition (dynamic) and equilibrium (static) were proposed to explain the common carp genome evolution between genome duplication and diploidization.  相似文献   

16.
This article reviews the current state of systems biology approaches, including the experimental tools used to generate ‘omic’ data and computational frameworks to interpret this data. Through illustrative examples, systems biology approaches to understand gene expression and gene expression regulation are discussed. Some of the challenges facing this field and the future opportunities in the systems biology era are highlighted.  相似文献   

17.
基因重复是普遍存在的生物学现象, 是基因组和遗传系统多样化的重要推动力量, 在生物进化过程中发挥着极其重要的作用。基因重复有何利弊, 基因发生重复后, 2个重复子拷贝的保留在基因功能方面是否存在偏好性, 子拷贝在表达和进化速率上如何分化, 以及重复基因为什么会被保留下来一直是进化生物学领域研究的热点问题之一。该文对以上重复基因研究的热点问题进行了介绍, 并对重复基因的进化机制和理论模型及其近年来的一些主要研究进展进行了综述。  相似文献   

18.
C He  K Cui  A Duan  Y Zeng  J Zhang 《Ecology and evolution》2012,2(8):1996-2004
As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.  相似文献   

19.
20.
More realistic approaches are needed to understand the complexity of ecological systems. Emergent properties of real systems can be used as a basis for a new, neither reductionist nor holistic, approach. Three systems, termed here BUBBLEs, WAVEs and CRYSTALs, have been identified as exhibiting emergent properties. They are non-hierarchical assemblages of individual components, with amplification and connectedness being two main principles that govern their build-up, maintenance and mutual relationships. Examples from various fields of biological and ecological science are referred to, ranging from individual organisms to landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号