共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Zhi Xie Don Kulasiri Sandhya Samarasinghe Jiang Qian 《Biotechnology and bioengineering》2010,105(2):250-259
To assess the importance of model parameters in kinetic models, sensitivity analysis is generally employed to provide key measures. However, it is quite often that no information is available for a significant number of parameters in biochemical models. Therefore, the results of sensitivity analysis that heavily rely on the accuracy of parameters are largely ambiguous. In this study, we propose a computational approach to determine the relative importance of parameters controlling the performance of the circadian clock in Drosophila. While previous attempts to sensitivity analysis largely depend on the knowledge of model parameters which are generally unknown, our study depicts a consistent picture of sensitivity assessment for a large number of parameters, even when the values of these parameters are not available in vivo. The resulting parametric sensitivity analysis suggests that PER/TIM negative loop is critical to maintain the stable periodicity of the circadian clock, which is consistent to the previously experimental and computational findings. Furthermore, our analysis generates a rich hypothesis of important parameters in the circadian clock that can be further tested experimentally. This approach can also be extended to assess the sensitivity of parameters in any biochemical system where a large number of parameters have unknown values. Biotechnol. Bioeng. 2010; 105: 250–259. © 2009 Wiley Periodicals, Inc. 相似文献
4.
Individual plant cells possess a genetic network, the circadian clock, that times internal processes to the day‐night cycle. Mathematical models of the clock are typically either “whole‐plant” that ignore tissue or cell type‐specific clock behavior, or “phase‐only” that do not include molecular components. To address the complex spatial coordination observed in experiments, here we implemented a clock network model on a template of a seedling. In our model, the sensitivity to light varies across the plant, and cells communicate their timing via local or long‐distance sharing of clock components, causing their rhythms to couple. We found that both varied light sensitivity and long‐distance coupling could generate period differences between organs, while local coupling was required to generate the spatial waves of clock gene expression observed experimentally. We then examined our model under noisy light‐dark cycles and found that local coupling minimized timing errors caused by the noise while allowing each plant region to maintain a different clock phase. Thus, local sensitivity to environmental inputs combined with local coupling enables flexible yet robust circadian timing. 相似文献
5.
Noémie Hamilton Natalia Diaz-de-Cerio David Whitmore 《Cell cycle (Georgetown, Tex.)》2015,14(8):1232-1241
The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development. 相似文献
6.
7.
Gregor Eichele Henrik Oster 《BioEssays : news and reviews in molecular, cellular and developmental biology》2015,37(10):1119-1128
A vast network of cellular circadian clocks regulates 24‐hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light‐reset master pacemaker residing in the hypothalamus that subsequently aligns subordinate peripheral clocks with each other and with external time. Here we review new experiments using conditional mouse genetics suggesting that resetting of the circadian system occurs in a more “federated” and tissue‐specific fashion, which allows for increased noise resistance and plasticity of circadian timekeeping under natural conditions. 相似文献
8.
Peter D Gould Nicolas Ugarte Mirela Domijan Maria Costa Julia Foreman Dana MacGregor Ken Rose Jayne Griffiths Andrew J Millar Bärbel Finkenstädt Steven Penfield David A Rand Karen J Halliday Anthony J W Hall 《Molecular systems biology》2013,9(1)
Circadian clocks exhibit ‘temperature compensation’, meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature‐dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature‐compensated clock model by adding passive temperature effects into only the light‐sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature‐dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems‐level understanding of period control in the plant circadian oscillator. 相似文献
9.
OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice 下载免费PDF全文
Chuan Liu Xuefeng Qu Yanhao Zhou Gaoyuan Song Naghmeh Abiri Yuhui Xiao Fan Liang Daiming Jiang Zhongli Hu Daichang Yang 《Plant, cell & environment》2018,41(3):630-645
10.
11.
Ehab HASSANEEN Alaa El‐Din SALLAM Ahmad ABO‐GHALIA Yoshiyuki MORIYAMA Kenji TOMIOKA 《Entomological Science》2011,14(3):278-282
Pigment‐dispersing factor (PDF) is an important neurotransmitter in insect circadian systems. In the cricket Gryllus bimaculatus, it affects nocturnal activity, the free‐running period and photic entrainment. In this study, to investigate whether these effects of PDF occur through a circadian molecular machinery, we measured mRNA levels of clock genes period (per) and timeless (tim) in crickets with pdf expression knocked‐down by pdf RNAi. The pdf RNAi decreased per and tim mRNA levels during the night to reduce the amplitude of their oscillation. The phase of the rhythm advanced by about 4 h in terms of trough and/or peak phases. On the other hand, pdf mRNA levels were little affected by per and tim RNAi treatment. These results suggest that PDF affects the circadian rhythm at least in part through the circadian molecular oscillation while the circadian clock has little effect on the pdf expression. 相似文献
12.
Helfrich-Förster C 《Zoology (Jena, Germany)》2002,105(4):297-312
The fruit fly Drosophila melanogaster has been a grateful object for circadian rhythm researchers over several decades. Behavioral, genetic, and molecular studies in the little fly have aided in understanding the bases of circadian time keeping and rhythmic behaviors not only in Drosophila, but also in other organisms, including mammals. This review summarizes our present knowledge about the fruit fly's circadian system at the molecular and neurobiological level, with special emphasis on its entrainment by environmental light-dark cycles. The results obtained for Drosophila are discussed with respect to parallel findings in mammals. 相似文献
13.
14.
15.
Xiaolan Zhang Gerard P. McNeil Marla J. Hilderbrand‐Chae Tina M. Franklin Andrew J. Schroeder F. Rob Jackson 《Developmental neurobiology》2000,45(1):14-29
Molecular genetic analysis indicates that rhythmic changes in the abundance of the Drosophila lark RNA‐binding protein are important for circadian regulation of adult eclosion (the emergence or ecdysis of the adult from the pupal case). To define the tissues and cell types that might be important for lark function, we have characterized the spatial and developmental patterns of lark protein expression. Using immunocytochemical or protein blotting methods, lark can be detected in late embryos and throughout postembryonic development, from the third instar larval stage to adulthood. At the late pupal (pharate adult) stage, lark protein has a broad pattern of tissue expression, which includes two groups of crustacean cardioactive peptide (CCAP)‐containing neurons within the ventral nervous system. In other insects, the homologous neurons have been implicated in the physiological regulation of ecdysis. Whereas lark has a nuclear distribution in most cell types, it is present in the cytoplasm of the CCAP neurons and certain other cells, which suggests that the protein might execute two different RNA‐binding functions. Lark protein exhibits significant circadian changes in abundance in at least one group of CCAP neurons, with abundance being lowest during the night, several hours prior to the time of adult ecdysis. Such a temporal profile is consistent with genetic evidence indicating that the protein serves a repressor function in mediating the clock regulation of adult ecdysis. In contrast, we did not observe circadian changes in CCAP neuropeptide abundance in late pupae, although CCAP amounts were decreased in newly‐emerged adults, presumably because the peptide is released at the time of ecdysis. Given the cytoplasmic localization of the lark RNA‐binding protein within CCAP neurons, and the known role of CCAP in the control of ecdysis, we suggest that changes in lark abundance may regulate the translation of a factor important for CCAP release or CCAP cell excitability. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 14–29, 2000 相似文献
16.
17.
《Chronobiology international》2013,30(7):870-888
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption. (Author correspondence: g.mazzoccoli@operapadrepio.it) 相似文献
18.
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24‐h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high‐fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process. 相似文献
19.
20.
Despite recent advances in circadian biology, detailed understanding of how a biological pacemaker system is assembled, maintained, and regulated continues to be a significant challenge. We have assembled and characterized a first-generation, regulatable, self-sustained clock-like expression system based on key components of the mammalian circadian clock. The molecular setup of the clock-like oscillator was reduced to the core set of positive and negative elements common to all known circadian pacemakers. Sophisticated tetracycline-responsive multi-cistronic expression integrated with forefront lentiviral transduction tools enabled autoregulated reporter transgene expression in a human cell line. We characterized transgene expression kinetics of an artificial oscillator and showed that its expression profiles could be modulated by a serum shock and administration of regulating tetracycline antibiotics. Design of a generic mammalian clock-like expression system will offer novel opportunities to study circadian biology and may provide a unique tool for rhythmic expression of desired transgenes fostering advances in biopharmaceutical manufacturing, gene therapy, and tissue engineering. 相似文献