首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Aphids ingest from the sieve tubes and by doing so they are confronted with sieve-tube occlusion mechanisms, which are part of the plant defense system. Because aphids are able to feed over longer periods, they must be able to prevent occlusion of the sieve plates induced by stylet penetration. Occlusion probably depends upon Ca2+-influx into the sieve element (SE) lumen. Aphid behavior, biochemical tests and in vitro experiments demonstrated that aphid''s watery saliva, injected during initial phase of a stylet penetration into the SE lumen, contains proteins that are able to bind calcium and prevent calcium-induced SE occlusion. In this addendum, we speculate on the consequences of saliva secretion for plant resistance. (a) The release of elicitors (e.g., oligogalacturonides) due to cell wall digestion by gel saliva enzymes may increase the resistance of cortex, phloem parenchyma cells and companion cells (CC) around the puncture site. (b) Ca2+-binding by aphid watery saliva may suppress the local defense responses in the SEs. (c) Signaling cascades triggered in CCs may lead to systemic resistance.Key words: aphid saliva, calcium binding, elicitor, oligogalacturonides, local plant defense, systemic plant defense, phloem translocation, aphid/plant-interactionAfter having penetrated the sieve-element (SE) plasma membrane, aphids encounter unspecific wound-induced occlusion reactions to prevent sap leakage.14 Occlusion mechanisms by callose, structural P-proteins and forisomes are likely induced by a sudden calcium influx into the sieve-tube lumen.5 Calcium possibly enters the sieve-tube lumen through the stylet wounding-site in the plasma membrane and/or stretch-activated calcium-channels.68 After SE penetration, aphids secrete watery saliva that contains calcium-binding proteins presumed to sabotage sieve-plate occlusion.9,10We demonstrated that Megoura viciae (Buckton) is most likely able to prevent or reduce sieve-tube occlusion in Vicia faba by secretion of watery saliva. By in vitro confrontation of isolated forisomes, protein bodies responsible for sieve-tube occlusion in Fabaceaen,5 and watery saliva concentrate, we were able to show that salivary proteins convey forisomes from a dispersed (+Ca2+) into a condensed (−Ca2+) state.10 The dispersed forisome functions in vivo as a plug, leading to stoppage of mass flow.5This in vitro evidence was corroborated by aphid behavior in response to leaf tip burning, which triggers an electrical potential wave (EPW) along the sieve tubes. Such an EPW induces Ca2+-influx and corresponding SE occlusion along the pathway.11 The passage of the EPW is associated with a prolonged secretion of watery saliva of aphids. This is interpreted as an attempt to unplug the SEs by calcium binding.10 Similar behavioral changes in response to leaf-tip burning were observed in an extended set of aphid/plant species combinations, indicating that attempted sabotage of sieve-tube occlusion by aphid saliva is a widespread phenomenon (unpublished).Aphid feeding was reported to induce local (on the same leaf) and systemic (in distant leaves) reactions of the host plant. The local response led to enhanced feeding,1214 while the systemic response showed reduced ingestion and extended periods of watery saliva secretion in sieve tubes distant from previous feeding sites.1214 These contrasting observations were described to be independent of the aphid species.13 The question arises how aphids induce these seemingly opposite plant responses?The aphid stylet pushing forward through cortical and vascular tissue is surrounded by a sheath of gel saliva, secreted into the apoplast.15,16 Gel saliva contains cellulase and pectinase that amongst others produce oligogalacturonides (OGs) along the stylet sheath by digestion of cell wall material.17,18 Usually, OGs act as elicitors, triggering a variety of plant responses against pathogens and insects in which the activation of calcium channels is involved.19,20 This seems to conflict with a suppression of resistance as observed for the impact of watery saliva in SEs.10 We will make an attempt to explain this paradoxon.OG induced defense responses may be triggered in all cell types adjacent to the salivary sheath (Fig. 1). Because watery saliva is only secreted briefly into these cells, which are punctured for orientation purposes (Hewer et al., unpublished), it seems unlikely that OG induced defense is suppressed here by saliva-mediated calcium binding.15 The diffusion range of OGs may be restricted to the close vicinity of the stylet sheath leading to an enhanced regional defense with a limited sphere of action (Fig. 1). Because the settling distance of aphids is restricted by their body size (1–10 mm),21 aphids feeding on the same leaf are probably hardly confronted with the regional defense induced by another aphid (Fig. 1). Otherwise, they would show an increased number of test probes before first phloem activity, as described for volatile mediated plant defense in cortex cells.13 Circumstantial support in favor of our hypothesis is provided by production of hydrogen peroxide in the apoplast,22 which is most likely associated with the action of OGs.22 Observations of hydrogen peroxide production during aphid (Macrosiphum euphorbiae) infestation of tomato in a limited area along the leaf veins, the preferred feeding sites of this species, indicate a locally restricted defense response (Fig. 1 and and22).4 The question arises why the cell signals are not spread via plasmodesmata to adjacent cells to induce resistance in a more extended leaf area? Dissemination of the signals may be prevented by closure of plasmodesmata (Fig. 1) through callose deposition,23,24 which is most likely directly coupled with calcium influx induced by OGs,25 by apoplastic hydrogen peroxide and to a minor extent by stylet puncture (Fig. 2).7,26Open in a separate windowFigure 1Hypothetical model on how stylet penetration induces and suppresses plant defense. Sheath saliva (light blue) that envelopes the stylet during propagation through the apoplast contains cellulase and pectinase,17,18 enzymes producing elicitors (e.g., oligogalacturonides (oGs)) by local cell wall digestion.19 Parenchyma cells adjacent to the sheath may develop a defense response owing to signaling cascades triggered by oG-mediated Ca2+-influx.19 Together with a Ca2+-dependent transient closure of plasmodesmata by callose (black crosses),23,24 the focused production of oGs may cause a defense response with a limited sphere of action (red—strong, brown—light, green—none). This restricted domain of defense may not be perceived by other aphids, since the settling distance is limited by the aphid body size. Nearby aphids do not show any sign of defense perception in their probing and feeding behavior.14 Signaling cascade compounds may be channeled from parenchyma cells to CCs (dashed yellow arrows), where they are subsequently released into the SEs. There they may act as long-distance systemic defense components (grey arrows). In contrast to the parenchyma domain (where only minor amounts of watery saliva are secreted), Ca2+-mediated reactions such as defense cascades and sieve-plate (SP) occlusion are suppressed in SEs by large amounts of watery saliva. The left aphid penetrates an SE and injects watery saliva (red cloud; ws) that inhibits local sieve-plate occlusion and,10 most likely, is transported by mass flow (black arrow) to adjacent SEs,27 where occlusion is impeded as well. A short-distance systemic spread over a few centimeters may explain local suppression of plant defense resulting in a higher rate of colonization. Salivary proteins or their degradation products may serve as systemic defense signals as well (grey arrows), but may also diffuse via the PPUs into CCs where additional systemic signals are induced (yellow arrows).Open in a separate windowFigure 2Hypothetical involvement of Ca2+-channels in aphid-induced cell defense (detail). During probing with its stylet the aphid secretes gel saliva as a lubrication substance (light blue) into the apoplast.15 on the way to the sieve tubes, aphids briefly puncture most non-phloem cells (red) after which the puncturing sites are sealed with gel saliva.7,16 Gel saliva also most likely prevents the influx of apoplastic calcium into pierced sieve elements (green) by sealing the penetration site.7 Watery saliva (red cloud), injected into the SE lumen,9 contains proteins which bind calcium ions (marked by X) that enter the SE via e.g., mechano sensitive Ca2+-channels activated by stylet penetration (blue tons).10 In this way, aphids suppress SE occlusion and activation of local defense cascades. In the parenchyma cells around the gel saliva sheath, a small cylindrical zone of defense may be induced by oligogalacturonides (oGs; brown triangles) produced by cell wall (grey) digestion.1719 Perceived by unknown receptor proteins (R; e.g., a receptor like protein kinase)34 and kinase mediation (black dotted and dashed arrows), oGs lead to a Ca2+-influx through kinase activated calcium channels (orange tons).25 Around the probing site, aphids apparently induce the production of superoxide by Ca2+-induced activation of the NADPH oxidase (violet box) and its following conversion to hydrogen peroxide (red spots) is mediated by superoxide dismutase (SoD).4 Hydrogen peroxide activates Ca2+-channels (violet tons) and diffuses through plasma membrane (curled arrows) therefore potentially acting as a intracellular signal.26By contrast, Ca2+-influx into SEs, induced by presence of OGs or stylet insertion (Fig. 2), is not expected to trigger local defense given the abundant excretion of Ca2+-binding watery saliva.7,10,25 Watery saliva may spread to down-stream and adjacent SEs through transverse and lateral sieve plates (Fig. 1).7,27 Aphids puncturing nearby SEs may therefore encounter less severe sieve-plate occlusion which results in facilitated settling and thus in increased population growth. Aggregation of feeding aphids would self-amplify population growth until a certain density is attained. Farther from the colonization site, this effect may be lost due to dilution. Stimulation of aphid feeding by aphid infestation was observed locally on potato by Myzus persicae and M. euphorbiae, respectively, 96 h after infestation.13 However, a similar effect was not observed for M. persicae on Arabidopsis thaliana where aphids induced premature leaf senescence and resistance 12 h after infestation,28 possibly induced by OGs.19As a speculation, OG induced Ca2+-influx into parenchyma cells adjacent to the salivary sheath activate Ca2+-induced signaling cascades via CaM,26,29 CDPKs,30,31 MAPKinases and reactive oxygen species (Fig. 2).32 Systemic resistance, induced by aphid infestation,1214 is mediated by unknown compounds such as, e.g., salivary proteins, their degradation products, signal cascade products or volatiles.13 Compounds produced in CCs first have to pass the PPUs, while SE signaling elements can be directly transported via mass flow (Fig. 1).The question arises if aphids profit from induced resistance on local (cortex and parenchyma cells) and systemic (distant plant organs) levels as holds for suppression of defense in SEs. Possibly settling and subsequent spread of competing pathogens/herbivores (e.g., fungi or other piercing-sucking insects) are suppressed by induced defense. In this context it is intriguing to understand how aphids cope with the self-induced systemic resistance, which probably lasts over weeks.33  相似文献   

3.
A new hypothesis explaining the adaptive significance of bright autumn leaf colors argues that these colors signal tree quality to myrmecophilous specialist aphids. In turn, the aphids attract aphid-tending ants during the following spring, which defend the trees from other aphids and herbivores. In this context, other types of plant coloration, such as the color change observed in young and old spring leaves, may function as a signal of plant quality for aphids and other myrmecophilous hemipterans. If these plant colors are costly for plants, then vividly colorful plants would be required to invest more in growth than in defense; as a result, colorful plants may be more palatable for honeydew-producing hemipterans, such as aphids, scale insects and treehoppers, although the relative importance of hemipterans other than aphids may be relatively low. These hemipterans may be attracted to colorful plants, after which their attendant ants would protect the plants from herbivory. However, it is necessary to examine color vision in hemipterans to support this hypothesis.Key words: ant-Hemiptera interactions, indirect effects, myrmecophiles, plant-ant mutualism, plant coloration, tritrophic interactionsRecently, the adaptive significance of plant coloration has attracted scientific interest.1 Various theories have been postulated to explain the adaptive value of autumn leaf colors (red and yellow).2 The coevolution hypothesis, the most novel and challenging theory among those proposed, argues that bright leaf colors serve as a conspicuous defense signal against autumn-colonizing insect herbivores, particularly aphids.3 According to this hypothesis, the production of autumn color pigments is an indicator of a particularly vigorous tree. Aphids, which have color vision and have long been associated with trees, migrate to winter host trees in the autumn and cause substantial damage. Therefore, vivid leaf color in the autumn would encourage aphids to colonize other less vigorously defended trees.4 Hamilton and Brown3 and Holopainen and Peltonen5 detected a higher number of specialist aphids on tree species with more intense autumn colors.After Hamilton and Brown,3 several researchers have attempted to explain the relationship between aphids and autumn color.2,6 However, they did not account for several possibilities.6 First, healthy, vigorous trees may not be well defended, because they invest more in growth than in defense. Second, some aphid species avoid colonizing trees with bright colors, whereas others are attracted to bright colors. Finally, there are numerous multispecific interactions between plants, herbivores, predators and parasitoids in tree crowns. Ants prey on various arthropods living in trees, and ant-aphid mutualism affects arboreal arthropod communities. I incorporated these factors and formed a hypothesis in which autumn leaf colors signal tree quality to myrmecophilous specialist aphids. These aphids, in turn, attract aphid-tending ants during the following spring, which then defend the trees from other aphids and herbivores. Thus, autumn colors may be adaptive, because they attract myrmecophilous specialist aphids and their attendant ants, thereby reducing herbivory and interspecific competition among aphids.6In this addendum, I extend my former hypothesis beyond the relationship between autumn leaf colors and aphids. First, myrmecophilous aphids are not the only arthropods that benefit trees. Styrsky and Eubanks7 recently reviewed the literature regarding the effects of interactions between ants and honeydew-producing hemipterans on plants, and found that plants actually benefited indirectly from these interactions in most cases. This finding supports a new hypothesis focused on plant-ant mutualism via aphids. In addition, the mutualism between ants and honeydew-producing hemipterans includes many other organisms in addition to aphids, such as scale insects and treehoppers. Scale insects, especially soft scales (Coccidae) and mealybugs (Pseudococcidae), comprise many species that are tended by honeydew-collecting ants,8 and ant-scale insect mutualism is often beneficial for host plants.7 Although the female adults of scale insects are usually immobile, first-instar nymphs (crawlers) disperse by wind and locate on host plants, usually trees.9 The nymphs, emerging at various times from spring to autumn,10 may use plant coloration to select a suitable host. However, because specialist coccids and mealybugs represent a minority among the speciose scale insects,10 coevolutionary relationships between plants and ants via specialist scale insects may be relatively rare. The treehoppers also comprise many myrmecophilous species,8,11 but the diversity of this group is highest in tropical regions; only a relatively small number of membracid species are present in temperate regions.12 Therefore, scale insects and treehoppers may be attracted to autumn colors, and their attendant ants may then defend trees against other herbivorous insects. To fully account for the adaptive value of autumn colors, one would expect the importance of these hemipterans to be less than that of aphids, based on their low host-plant specificity, restricted distribution and life cycles. However, hemipterans may be associated with plant coloration in other aspects than autumn leaf color.Second, the colors of young and old spring leaves may also signal plant quality to ant-tended honeydew-producing hemipterans. The young leaves of many plants are reddish or yellowish (Fig. 1A and B).13 In the spring and other seasons, the old leaves of some evergreen tree species turn red or yellow (Fig. 1B). Because changes in leaf color may occur from spring to autumn, various hemipteran species may play specific roles as the season progresses. Aphids migrate in the spring and in the autumn,14 although most host-alternating aphids migrate to trees in autumn and to herbs in the late spring in temperate regions.15 If plants pay some cost for these colors16 and vivid colors indicate high plant quality for hemipterans, then changing colors may attract myrmecophilous hemipterans including aphids, scale insects and treehoppers, which may then protect plants against herbivory by other insects.Open in a separate windowFigure 1(A) Red young leaves of the evergreen oak Quercus glauca. (B) Yellowish young and reddish old leaves of the camphor tree Cinnamomum camphora.However, color vision has not been examined in detail in most hemipteran insects.17,18 Many insects are insensitive to red, although one species of flower-visiting thrip is specifically attracted to red flowers.19 Thus, studies on color vision in hemipteran insects are required to evaluate this new hypothesis, as well as the coevolution hypothesis.  相似文献   

4.
5.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

6.
7.
8.
9.
10.
As a second messenger, H2O2 generation and signal transduction is subtly controlled and involves various signal elements, among which are the members of MAP kinase family. The increasing evidences indicate that both MEK1/2 and p38-like MAP protein kinase mediate ABA-induced H2O2 signaling in plant cells. Here we analyze the mechanisms of similarity and difference between MEK1/2 and p38-like MAP protein kinase in mediating ABA-induced H2O2 generation, inhibition of inward K+ currents, and stomatal closure. These data suggest that activation of MEK1/2 is prior to p38-like protein kinase in Vicia guard cells.Key words: H2O2 signaling, ABA, p38-like MAP kinase, MEK1/2, guard cellAn increasing number of literatures elucidate that reactive oxygen species (ROS), especially H2O2, is essential to plant growth and development in response to stresses,14 and involves activation of various signaling events, among which are the MAP kinase cascades.13,5 Typically, activation of MEK1/2 mediates NADPH oxidase-dependent ROS generation in response to stresses,4,68 and the facts that MEK1/2 inhibits the expression and activation of antioxidant enzymes reveal how PD98059, the specific inhibitor of MEK1/2, abolishes abscisic acid (ABA)-induced H2O2 generation.6,8,9 It has been indicated that PD98059 does not to intervene on salicylic acid (SA)-stimulated H2O2 signaling regardless of SA mimicking ABA in regulating stomatal closure.2,6,8,10 Generally, activation of MEK1/2 promotes ABA-induced stomatal closure by elevating H2O2 generation in conjunction with inactivating anti-oxidases.Moreover, activation of plant p38-like protein kinase, the putative counterpart of yeast or mammalian p38 MAP kinase, has been reported to participate in various stress responses and ROS signaling. It has been well documented that p38 MAP kinase is involved in stress-triggered ROS signaling in yeast or mammalian cells.1113 Similar to those of yeast and mammals, many studies showed the activation of p38-like protein kinase in response to stresses in various plants, including Arabidopsis thaliana,1416 Pisum sativum,17 Medicago sativa18 and tobacco.19 The specific p38 kinase inhibitor SB203580 was found to modulate physiological processes in plant tissues or cells, such as wheat root cells,20 tobacco tissue21 and suspension-cultured Oryza sativa cells.22 Recently, we investigate how activation of p38-like MAP kinase is involved in ABA-induced H2O2 signaling in guard cells. Our results show that SB203580 blocks ABA-induced stomatal closure by inhibiting ABA-induced H2O2 generation and decreasing K+ influx across the plasma membrane of Vicia guard cells, contrasting greatly with its analog SB202474, which has no effect on these events.23,24 This suggests that ABA integrate activation of p38-like MAP kinase and H2O2 signaling to regulate stomatal behavior. In conjunction with SB203580 mimicking PD98059 not to mediate SA-induced H2O2 signaling,23,24 these results generally reveal that the activation of p38-like MAP kinase and MEK1/2 is similar in guard cells.On the other hand, activation of p38-like MAP kinase23,24 is not always identical to that of MEK1/28,25 in ABA-induced H2O2 signaling of Vicia guard cells. For example, H2O2- and ABA-induced stomatal closure was partially reversed by SB203580. The maximum inhibition of both regent-induced stomatal closure were observed at 2 h after treatment with SB203580, under which conditions the stomatal apertures were 89% and 70% of the control values, respectively. By contrast, when PD98059 was applied together with ABA or H2O2, the effects of both ABA- and H2O2-induced stomatal closure were completely abolished (Fig. 1). These data imply that the two members of MAP kinase family are efficient in H2O2-stimulated stomatal closure, but p38-like MAP kinase is less susceptive than MEK1/2 to ABA stimuli.Open in a separate windowFigure 1Effects of SB203580 and PD98059 on ABA- and H2O2-induced stomatal closure. The experimental procedure and data analysis are according to the previous publication.8,23,24It has been reported that ABA or NaCl activate p38 MAP kinase in the chloronema cells of the moss Funaria hygrometrica in 2∼10 min.26 Similar to this, SB203580 improves H2O2-inhibited inward K+ currents after 4 min and leads it to the control level (100%) during the following 8 min (Fig. 2). However, the activation of p38-like MAP kinase in response to ABA need more time, and only recovered to 75% of the control at 8 min of treatment (Fig. 2). These results suggest that control of H2O2 signaling is required for the various protein kinases including p38-like MAP kinase and MEK1/2 in guard cells,1,2,8,23,24 and the ABA and H2O2 pathways diverge further downstream in their actions on the K+ channels and, thus, on stomatal control. Other differences in action between ABA and H2O2 are known. For example, Köhler et al. (2001) reported that H2O2 inhibited the K+ outward rectifier in guard cells shows that H2O2 does not mimic ABA action on guard cell ion channels as it acts on the K+ outward rectifier in a manner entirely contrary to that of ABA.27Open in a separate windowFigure 2Effect of SB203580 on ABA- and H2O2-inhibited inward K+ currents. The experimental procedure and data analysis are according to the previous publication.24 SB203580 directs ABA- and H2O2-inactivated inward K+ currents across plasma membrane of Vicia guard cells. Here the inward K+ currents value is stimulated by −190 mV voltage.Based on the similarity and difference between PD98059 and SB203580 in interceding ABA and H2O2 signaling, we speculate the possible mechanism is that the member of MAP kinase family specially regulate signal event in ABA-triggered ROS signaling network,14 and the signaling model as follows (Fig. 3).Open in a separate windowFigure 3Schematic illustration of MAP kinase-mediated H2O2 signaling of guard cells. The arrows indicate activation. The line indicates enhancement and the bar denotes inhibition.  相似文献   

11.
12.
Cellulose Synthase Like (CSL) proteins are a group of plant glycosyltransferases that are predicted to synthesize β-1,4-linked polysaccharide backbones. CSLC, CSLF and CSLH families have been confirmed to synthesize xyloglucan and mixed linkage β-glucan, while CSLA family proteins have been shown to synthesize mannans. The polysaccharide products of the five remaining CSL families have not been determined. Five CSLD genes have been identified in Arabidopsis thaliana and a role in cell wall biosynthesis has been demonstrated by reverse genetics. We have extended past research by producing a series of double and triple Arabidopsis mutants and gathered evidence that CSLD2, CSLD3 and CSLD5 are involved in mannan synthesis and that their products are necessary for the transition between early developmental stages in Arabidopsis. Moreover, our data revealed a complex interaction between the three glycosyltransferases and brought new evidence regarding the formation of non-cellulosic polysaccharides through multimeric complexes.Key words: mannan, mannose, plant cell wall, glycosyltransferase, cellulose synthase like, CSL, biosynthesis, hemicelluloseThe plant cell wall is mainly composed of polysaccharides, which are often grouped into cellulose, hemicelluloses and pectin. Since the discovery of the first cellulose synthase (CESA) genes in cotton fibers,1 the synthesis of cellulose has been extensively studied.2 In contrast, the glycosyltransferases responsible for synthesizing hemicelluloses and pectin are still largely unidentified.3,4,5 The CESA genes are members of a superfamily that includes genes with a high sequence similarity with CESA genes and are named Cellulose Synthase Like (CSL).6 The CSL genes have themselves been grouped into nine families designated CSLA, -B, -C, -D, -E, -F, -G, -H and -J (Figure 1A).5,6 Mannan and glucomannan synthase activity has been demonstrated in the CSLA family,7,8,9 while members of the CSLC family have been implicated in synthesis of the xyloglucan backbone.10 CSLF and CSLH, which are found only in grasses, are involved in synthesis of mixed linkage glucan.11,12 The function of the remaining CSL families has not been determined. We have reported our research on the CSLD family in a recent publication.13 Of all the CSL families, CSLD possesses the most ancient intron/exon structure and is the most similar to the CESA family.6 CSLD genes are found in all sequenced genomes of terrestrial plants including Physcomitrella and Selaginella suggesting a highly conserved function throughout the plant kingdom (Figure 1A). Five genes (CSLD1 to CSLD5) and one apparent pseudogene (CSLD6) have been identified in Arabidopsis thaliana.14 Bernal et al.14,15 studied knock-out mutants of the individual genes and presented evidence for a role in cell wall biosynthesis for each Arabidopsis CSLD. To elucidate the activity of the CSLD proteins and obtain further understanding of their biological role, we generated double mutants csld2/csld3, csld2/csld5, csld3/csld5 and the triple mutant csld2/csld3/csld5. Immunochemical, biochemical and complementation assays brought evidence that CSLD5 or CSLD2 in concomitance with CSLD3 act as mannan synthases.Open in a separate windowFigure 1(A) Schematic representation of the CESA superfamily phylogeny. The inset on the right is a detailed phylogenetic tree of CSLDs from Selaginella moellendorffii, Arabidopsis thaliana and Oryza sativa. The figure is modified from Ulvskov and Scheller.5 (B) Comparison of csld2, csld3, csld5 with Col-0 20 days after germination. The inflorescences of csld2 and csld3 were similar to Col-0 whereas csld5 had a delayed growth. Scale bar: 1 cm. (C) Col-0 and csld2/csld3/csld5 (triple mutant, TM) 40 days after germination. After 40 days, the triple mutant was barely developed and, as shown in the magnified inset, displayed purple coloration indicating accumulation of anthocyanins, a typical stress response. Scale bar: 2 mm.  相似文献   

13.
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.Key words: SIZ1, SA, flowering, SUMO, FLD, FLCSUMO conjugation and deconjugation are post-translational processes implicated in plant defense against pathogens, abscisic acid (ABA) and phosphate (Pi) starvation signaling, development, and drought and temperature stress tolerance, albeit only a few of the modified proteins have been identified.18 The Arabidopsis AtSIZ1 locus encodes a SUMO E3 ligase that regulates floral transition and leaf development.8,9 siz1 plants accumulate substantial levels of SA, which is the primary cause for dwarfism and early short-day flowering exhibited by these plants.1,9 How SA promotes transition to flowering is not yet known but apparently, it is through a mechanism that is independent of the known floral signaling pathways.9,10 Exogenous SA reduces expression of AGAMOUS-like 15 (AGL15), a floral repressor that functions redundantly with AGL18.11,12 A possible mechanism by which SA promotes transition to flowering may be by repressing expression of AGL15 and AGL18 (Fig. 1).Open in a separate windowFigure 1Model of how SUMO conjugation and deconjugation regulate plant development in Arabidopsis. SIZ1 and Avr proteins regulate biosynthesis and accumulation of SA, a plant stress hormone that is involved in plant innate immunity, leaf development and regulation of flowering time. SA promotes transition to flowering may through AGL15/AGL18 dependent and independent pathways. FLC expression is activated by FRIGIDA but repressed by the autonomous pathway gene FLD, and SIZ1-mediated sumoylation of FLD represses its activity. Lines with arrows indicate upregulation (activation), and those with bars identify downregulation (repression).siz1 mutations also cause constitutive induction of pathogenesis-related protein genes leading to enhanced resistance against biotrophic pathogens.1 Several bacterial type III effector proteins, such as YopJ, XopD and AvrXv4, have SUMO isopeptidase activity.1315 PopP2, a member of YopJ/AvrRxv bacterial type III effector protein family, physically interacts with the TIR-NBS-LRR type R protein RRS1, and possibly stabilizes the RRS1 protein.16 Phytopathogen effector and plant R protein interactions lead to increased SA biosynthesis and accumulation, which in turn activates expression of pathogenesis-related proteins that facilitate plant defense.17 SIZ1 may participate in SUMO conjugation of plant R proteins to regulate Avr and R protein interactions leading to SA accumulation, which, in turn, affects phenotypes such as diseases resistance, dwarfism and flowering time (Fig. 1).Our recent work revealed also that AtSIZ1 facilitates FLC expression, negatively regulating flowering.9 AtSIZ1 promotes FLC expression by repressing FLD activity.9 Site-specific mutations that prevent SUMO1/2 conjugation to FLD result in enhanced activity of the protein to represses FLC expression, which is associated with reduced acetylation of histone 4 (H4) in FLC chromatin.9 FLD, an Arabidopsis ortholog of Lysine-Specific Demethylase 1 (LSD1), is a floral activator that downregulates methylation of H3K4 in FLC chromatin and represses FLC expression.18,19 Interestingly, bacteria expressing recombinant FLD protein did not demethylate H3K4me2, inferring that the demethylase activity requires additional co-factors as are necessary for LSD1.18,20 Together, these results suggest that SIZ1-mediated SUMO modification of FLD may affect interactions between FLD and co-factors, which is necessary for FLC chromatin modification.Despite our results that implicate SA in flowering time control, how SIZ1 regulates SA accumulation and the identity of the effectors involved remain to be discovered. In addition, it remains to be determined if SIZ1 is involved in other mechanisms that modulate FLD activity and FLC expression, or the function of other autonomous pathway determinants.  相似文献   

14.
15.
16.
Callose in polypodiaceous ferns performs multiple roles during stomatal development and function. This highly dynamic (1→3)-β-D-glucan, in cooperation with the cytoskeleton, is involved in: (a) stomatal pore formation, (b) deposition of local GC wall thickenings and (c) the mechanism of stomatal pore opening and closure. This behavior of callose, among others, probably relies on the particular mechanical properties as well as on the ability to form and degrade rapidly, to create a scaffold or to serve as a matrix for deposition of other cell wall materials and to produce fibrillar deposits in the periclinal GC walls, radially arranged around the stomatal pore. The local callose deposition in closing stomata is an immediate response of the external periclinal GC walls experiencing strong mechanical forces induced by the neighboring cells. The radial callose fibrils transiently co-exist with radial cellulose microfibrils and, like the latter, seem to be oriented via cortical MTs.Key words: callose, cytoskeleton, fern stomata, guard cell wall thickening, stomatal function, stomatal pore formationCallose represents a hemicellulosic matrix cell wall component, usually of temporal appearance, which is synthesized by callose synthases, enzymes localized in the plasmalemma and degraded by (1→3)-β-glucanases.14 It consists of triple helices of a linear homopolymer of (1→3)-β-glucose residues.57 The plant cell is able to form and degrade callose in a short time. On the surface of the plasmolyzed protoplast a thin callose surface film may arise within seconds.8 Callose is the only cell wall component that is implicated in a great variety of developmental plant processes, like cell plate formation,911 microspore development,1214 trafficking through plasmodesmata,15,16 formation and closure of sieve pores,16 response of the plant cells to multiple biotic and abiotic stresses,4,5 establishment of distinct “cell cortex domains”,17 etc.Despite the widespread occurrence of callose, its general function(s) is (are) not well understood (reviewed in refs. 4 and 5). It may serve as: a matrix for deposition of other cell wall materials, as in developing cell plates;9 a cell wall-strengthening material, as in cotton seed hairs and growing pollen tubes;18 a sealing or plugging material at the plasma membrane of pit fields, plasmodesmata and sieve plate pores;16 a mechanical obstruction to growth of fungal hyphae or a special permeability barrier, as in pollen mother cell walls and muskmelon endosperm envelopes.4,19,20 The degree of polymerization, age and thickness of callose deposits may cause variation in its physical properties.5Evidence accumulated so far showed that a significant number of ferns belonging to Polypodiales and some other fern classes forms intense callose deposits in the developing GC wall thickenings.2128 This phenomenon has not been observed in angiosperm stomata, although callose is deposited along the whole surface of the young VW and in the VW ends of differentiating and mature stomata (our unpublished data; reviewed in refs 29 and 30).Stomata are specialized epidermal bicellular structures (Fig. 1A) regulating gas exchange between the aerial plant organs and the external environment. Their appearance in the first land plants was crucial for their adaptation and survival in the terrestrial environment. The constituent GCs have the ability to undergo reversible changes in shape, leading to opening and closure of the stomatal pore (stomatal movement). The mechanism by which GCs change shape is based on: (a) the particular mechanical properties of GC walls owed to their particular shape, thickening, fine structure and chemical composition and (b) the reversible changes in vacuole volume, in response to environmental factors, through fairly complicated biochemical pathways.3033Open in a separate windowFigure 1(A) Diagrammatic representation of an elliptical stoma. (B–E) Diagram to show the process of stomatal pore formation in angiosperms (B and C) and Polypodiales ferns (D and E). The arrows in (B) indicate the forming stomatal pore. DW, dorsal wall; EPW, external periclinal wall; GC, guard cell; IPW, internal periclinal wall; ISP, internal stomatal pore; PE polar ventral wall end; VW, ventral wall.The present review is focused on the multiple-role of callose in differentiating and functioning fern stomata, as they are substantiated by the available information, including some unpublished data, and in particular in: stomatal pore formation, deposition of GC wall thickenings and opening and closure of the stomatal pore. The mode of deposition of fibrillar callose deposits in GC walls and the mechanism of their alignment are also considered.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号