首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reprogrammed metabolism is a hallmark of cancer. Glioblastoma (GBM) tumor cells predominantly utilize aerobic glycolysis for the biogenesis of energy and intermediate nutrients. However, in GBM, the clinical significance of glycolysis and its underlying relations with the molecular features such as IDH1 mutation and subtype have not been elucidated yet. Herein, based on glioma datasets including TCGA (The Cancer Genome Atlas), REMBRANDT (Repository for Molecular Brain Neoplasia Data) and GSE16011, we established a glycolytic gene expression signature score (GGESS) by incorporating ten glycolytic genes. Then we performed survival analyses and investigated the correlations between GGESS and IDH1 mutation as well as the molecular subtypes in GBMs. The results showed that GGESS independently predicted unfavorable prognosis and poor response to chemotherapy of GBM patients. Notably, GGESS was high in GBMs of mesenchymal subtype but low in IDH1-mutant GBMs. Furthermore, we found that the promoter regions of tumor-promoting glycolytic genes were hypermethylated in IDH1-mutant GBMs. Finally, we found that high GGESS also predicted poor prognosis and poor response to chemotherapy when investigating IDH1-wildtype GBM patients only. Collectively, glycolysis represented by GGESS predicts unfavorable clinical outcome of GBM patients and is closely associated with mesenchymal subtype and IDH1 mutation in GBMs.  相似文献   

2.
RATIONALE: Treatment of glioblastoma (GBM) remains challenging due in part to its histologic intratumoral heterogeneity that contributes to its overall poor treatment response. Our goal was to evaluate a voxel-based biomarker, the functional diffusion map (fDM), as an imaging biomarker to detect heterogeneity of tumor response in a radiation dose escalation protocol using a genetically engineered murine GBM model. EXPERIMENTAL DESIGN: Twenty-four genetically engineered murine GBM models [Ink4a-Arf-/-/Ptenloxp/loxp/Ntv-a RCAS/PDGF(+)/Cre(+)] were randomized in four treatment groups (n = 6 per group) consisting of daily doses of 0, 1, 2, and 4 Gy delivered for 5 days. Contrast-enhanced T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) scans were acquired for tumor delineation and quantification of apparent diffusion coefficient (ADC) maps, respectively. MRI experiments were performed daily for a week and every 2 days thereafter. For each animal, the area under the curve (AUC) of the percentage change of the ADC (AUCADC) and that of the increase in fDM values (AUCfDM+) were determined within the first 5 days following therapy initiation. RESULTS: Animal survival increased with increasing radiation dose. Treatment induced a dose-dependent increase in tumor ADC values. The strongest correlation between survival and ADC measurements was observed using the AUCfDM+ metric (R2 = 0.88). CONCLUSION: This study showed that the efficacy of a voxel-based imaging biomarker (fDM) was able to detect spatially varying changes in tumors, which were determined to be a more sensitive predictor of overall response versus whole-volume tumor measurements (AUCADC). Finally, fDM provided for visualization of treatment-associated spatial heterogeneity within the tumor.  相似文献   

3.
Deregulation of microRNAs (miRNAs) is implicated in tumor progression. We attempt to indentify the tumor suppressive miRNA not only down-regulated in glioblastoma multiforme (GBM) but also potent to inhibit the oncogene EZH2, and then investigate the biological function and pathophysiologic role of the candidate miRNA in GBM. In this study, we show that miRNA-138 is reduced in both GBM clinical specimens and cell lines, and is effective to inhibit EZH2 expression. Moreover, high levels of miR-138 are associated with long overall and progression-free survival of GBM patients from The Cancer Genome Atlas dataset (TCGA) data portal. Ectopic expression of miRNA-138 effectively inhibits GBM cell proliferation in vitro and tumorigenicity in vivo through inducing cell cycles G1/S arrest. Mechanism investigation reveals that miRNA-138 acquires tumor inhibition through directly targeting EZH2, CDK6, E2F2 and E2F3. Moreover, an EZH2-mediated signal loop, EZH2-CDK4/6-pRb-E2F1, is probably involved in GBM tumorigenicity, and this loop can be blocked by miRNA-138. Additionally, miRNA-138 negatively correlates to mRNA levels of EZH2 and CDK6 among GBM clinical samples from both TCGA and our small amount datasets. In conclusion, our data demonstrate a tumor suppressive role of miRNA-138 in GBM tumorigenicity, suggesting a potential application in GBM therapy.  相似文献   

4.

Background

Despite recent discoveries of new molecular targets and pathways, the search for an effective therapy for Glioblastoma Multiforme (GBM) continues. A newly emerged field, radiogenomics, links gene expression profiles with MRI phenotypes. MRI-FLAIR is a noninvasive diagnostic modality and was previously found to correlate with cellular invasion in GBM. Thus, our radiogenomic screen has the potential to reveal novel molecular determinants of invasion. Here, we present the first comprehensive radiogenomic analysis using quantitative MRI volumetrics and large-scale gene- and microRNA expression profiling in GBM.

Methods

Based on The Cancer Genome Atlas (TCGA), discovery and validation sets with gene, microRNA, and quantitative MR-imaging data were created. Top concordant genes and microRNAs correlated with high FLAIR volumes from both sets were further characterized by Kaplan Meier survival statistics, microRNA-gene correlation analyses, and GBM molecular subtype-specific distribution.

Results

The top upregulated gene in both the discovery (4 fold) and validation (11 fold) sets was PERIOSTIN (POSTN). The top downregulated microRNA in both sets was miR-219, which is predicted to bind to POSTN. Kaplan Meier analysis demonstrated that above median expression of POSTN resulted in significantly decreased survival and shorter time to disease progression (P<0.001). High POSTN and low miR-219 expression were significantly associated with the mesenchymal GBM subtype (P<0.0001).

Conclusion

Here, we propose a novel diagnostic method to screen for molecular cancer subtypes and genomic correlates of cellular invasion. Our findings also have potential therapeutic significance since successful molecular inhibition of invasion will improve therapy and patient survival in GBM.  相似文献   

5.
PURPOSE: The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN: We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS: AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION: DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.  相似文献   

6.
Cancer initiation and progression involve microRNAs that can function like tumor suppressors and oncogenes. The functional significance of most miRNAs is currently unknown. To determine systematically which microRNAs are essential for glioma growth, we screened a precursor microRNA library in three human glioblastoma and one astroglial cell line model systems. The most prominent and consistent cell proliferation–reducing hits were validated in secondary screening with an additional apoptosis endpoint. The functional screening data were integrated in the miRNA expression data to find underexpressed true functional tumor suppressor miRNAs. In addition, we used miRNA-target gene predictions and combined siRNA functional screening data to find the most probable miRNA-target gene pairs with a similar functional effect on proliferation. Nine novel functional miRNAs (hsa-miR-129, -136, -145, -155, -181b, -342-5p, -342-3p, -376a/b) in GBM cell lines were validated for their importance in glioma cell growth, and similar effects for six target genes (ROCK1, RHOA, MET, CSF1R, EIF2AK1, FGF7) of these miRNAs were shown functionally. The clinical significance of the functional hits was validated in miRNA expression data from the TCGA glioblastoma multiforme (GBM) tumor cohort. Five tumor suppressor miRNAs (hsa-miR-136, -145, -342, -129, -376a) showed significant underexpression in clinical GBM tumor samples from the TCGA GBM cohort further supporting the role of these miRNAs in vivo. Most importantly, higher hsa-miR-145 expression in GBM tumors yielded significantly better survival (p<0.005) in a subset of patients thus validating it as a genuine tumor suppressor miRNA. This systematic functional profiling provides important new knowledge about functionally relevant miRNAs in GBM biology and may offer new targets for treating glioma.  相似文献   

7.
Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by genetic instability and unpredictable clinical behavior. GBM is marked by an extremely poor prognosis with median overall survival of 12~14 months. In this study, we detected the CD137L-expressing cells and IL-17-expressing cells in tumor tissues resected from patients with GBM. Expression of CD137L and IL-17 were assessed by immunohistochemistry, and the prognostic value of CD137L and IL-17 expression within the tumor tissues were assessed by Cox regression and Kaplan-Meier analysis. Immunohistochemical detection showed that positive cells of CD137L and IL-17 in glioblastoma tissue samples were 46.3% (19/ 41) and 73.2% (30/41) respectively. Expression of CD137L was not correlated with overall survival of GBM patients (P=0.594), while significantly longer survival rate was seen in patients with high expression of IL-17, compared to those with low expression of IL-17 (P=0.007). In addition, we also found that IL-17 expression was significantly correlated with Progression-free survival (PFS) (P=0.016) and death rate (P=0.01). Furthermore, multivariate Cox proportional hazard analyses revealed that IL-17 (P=0.018) and PFS (P=0.028) were independent factors affecting the overall survival probability. Kaplan-Meier analysis showed that PFS of high expression of IL-17 group were significantly longer (P=0.004) than low expression group with GBM. It is concluded that high levels of IL-17 expression in the tumor tissues may be a good prognostic marker for patients with GBM.  相似文献   

8.
Glioblastoma multiform (GBM) is a highly malignant brain tumor. Bevacizumab is a recent therapy for stopping tumor growth and even shrinking tumor through inhibition of vascular development (angiogenesis). This paper presents a non-invasive approach based on image analysis of multi-parametric magnetic resonance images (MRI) to predict response of GBM to this treatment. The resulting prediction system has potential to be used by physicians to optimize treatment plans of the GBM patients. The proposed method applies signal decomposition and histogram analysis methods to extract statistical features from Gd-enhanced regions of tumor that quantify its microstructural characteristics. MRI studies of 12 patients at multiple time points before and up to four months after treatment are used in this work. Changes in the Gd-enhancement as well as necrosis and edema after treatment are used to evaluate the response. Leave-one-out cross validation method is applied to evaluate prediction quality of the models. Predictive models developed in this work have large regression coefficients (maximum R 2 = 0.95) indicating their capability to predict response to therapy.  相似文献   

9.
Marine stock enhancement is often characterized by poor survival of hatchery-reared individuals due to deficiencies in their fitness, such as a diminished capacity to avoid predators. Field experiments were used to examine predation on Penaeus plebejus, a current candidate for stock enhancement in Australia. We compared overall survival of, and rates of predation on, wild P. plebejus juveniles, naïve hatchery-reared juveniles (which represented the state of individuals intended for stock enhancement) and experienced hatchery-reared juveniles (which had been exposed to natural predatory stimuli). Predation was examined in the presence of an ambush predator (Centropogon australis White, 1790) and an active-pursuit predator (Metapenaeus macleayi Haswell) within both complex (artificial macrophyte) and simple (bare sand and mud) habitats. Overall survival was lower and rates of predation were higher in simple habitats compared to complex habitats in the presence of C. australis. However, the three categories of juveniles survived at similar proportions and suffered similar rates of predation within each individual habitat. No differences in survival and rates of predation were detected among habitats or the categories of juveniles when M. macleayi was used as a predator. These results indicate that wild and hatchery-reared P. plebejus juveniles are equally capable of avoiding predators. Furthermore, exposure of hatchery-reared juveniles to wild conditions does not increase their ability to avoid predators, suggesting an innate rather than learned anti-predator response. The lower predation by C. australis in complex habitats was attributed to a reduction in this ambush predator's foraging efficiency due to the presence of structure. Ecological experiments comparing wild and hatchery-reared individuals should precede all stock enhancement programs because they may identify deficits in hatchery-reared animals that could be mitigated to optimize survival. Such studies can also identify weaknesses in wild animals, relative to hatchery-reared individuals, that may lead to the loss of resident populations.  相似文献   

10.
Glioblastoma (GBM) is an incurable cancer, with survival rates of just 14-16 months after diagnosis.1 Functional genomics have identified numerous genetic events involved in GBM development. One of these, the deregulation of microRNAs (miRNAs), has been attracting increasing attention due to the multiple biologic processes that individual miRNAs influence. Our group has been studying the role of miR-182 in GBM progression, therapy resistance, and its potential as GBM therapeutic. Oncogenomic analyses revealed that miR-182 is the only miRNA, out of 470 miRNAs profiled by The Cancer Genome Atlas (TCGA) program, which is associated with favorable patient prognosis, neuro-developmental context, temozolomide (TMZ) susceptibility, and most significantly expressed in the least aggressive oligoneural subclass of GBM. miR-182 sensitized glioma cells to TMZ-induced apoptosis, promoted glioma initiating cell (GIC) differentiation, and reduced tumor cell proliferation via knockdown of Bcl2L12, c-Met and HIF2A.2 To deliver miR-182 to intracranial gliomas, we have characterized Spherical Nucleic Acids covalently functionalized with miR-182 sequences (182-SNAs). Upon systemic administration, 182-SNAs crossed the blood-brain/blood-tumor barrier (BBB/BTB), reduced tumor burden, and increased animal subject survival.2-4 Thus, miR-182-based SNAs represent a tool for systemic delivery of miRNAs and a novel approach for the precision treatment of malignant brain cancers.  相似文献   

11.
CD97 is a novel glioma antigen that confers an invasive phenotype and poor survival in patients with glioblastoma (GBM), the most aggressive primary malignant brain tumor. The short isoform of CD97, known as EGF(1,2,5), has been shown to promote invasion and metastasis, but its role in gliomas and GBM-derived brain tumor initiating cells (BTICs) has not been studied. We sought to characterize CD97 expression among gliomas and identify the specific isoforms expressed. The short isoform of CD97 was identified in GBM and GBM-derived BTICs, but not low grade or anaplastic astrocytomas. All samples expressing the EGF(1,2,5) isoform were also found to express the EGF(1,2,3,5) isoform. These isoforms are believed to possess similar ligand binding patterns and interact with chondroitin sulfate, a component of the extracellular matrix, and the integrin α5β1. Using data acquired from the Cancer Genome Atlas (TCGA), we show that CD97 is upregulated among the classical and mesenchymal subtypes of GBM and significantly decreased among IDH1 mutant GBMs. Given its proven roles in tumor invasion, expression among aggressive genetic subtypes of GBM, and association with overall survival, CD97 is an attractive therapeutic target for patients with GBM.  相似文献   

12.

Background

Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature.

Methods

Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort.

Results

A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p<0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group.

Conclusion

We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.  相似文献   

13.
14.
Glioblastoma (GBM) heterogeneity in the genomic and phenotypic properties has potentiated personalized approach against specific therapeutic targets of each GBM patient. The Cancer Genome Atlas (TCGA) Research Network has been established the comprehensive genomic abnormalities of GBM, which sub-classified GBMs into 4 different molecular subtypes. The molecular subtypes could be utilized to develop personalized treatment strategy for each subtype. We applied a classifying method, NTP (Nearest Template Prediction) method to determine molecular subtype of each GBM patient and corresponding orthotopic xenograft animal model. The models were derived from GBM cells dissociated from patient''s surgical sample. Specific drug candidates for each subtype were selected using an integrated pharmacological network database (PharmDB), which link drugs with subtype specific genes. Treatment effects of the drug candidates were determined by in vitro limiting dilution assay using patient-derived GBM cells primarily cultured from orthotopic xenograft tumors. The consistent identification of molecular subtype by the NTP method was validated using TCGA database. When subtypes were determined by the NTP method, orthotopic xenograft animal models faithfully maintained the molecular subtypes of parental tumors. Subtype specific drugs not only showed significant inhibition effects on the in vitro clonogenicity of patient-derived GBM cells but also synergistically reversed temozolomide resistance of MGMT-unmethylated patient-derived GBM cells. However, inhibitory effects on the clonogenicity were not totally subtype-specific. Personalized treatment approach based on genetic characteristics of each GBM could make better treatment outcomes of GBMs, although more sophisticated classifying techniques and subtype specific drugs need to be further elucidated.  相似文献   

15.
In theory, habitat preferences should be adaptive. Accordingly, fitness is often assumed to be greater in preferred habitats; however, this assumption is rarely tested and, when it is, the results are often equivocal. Habitat preferences may not directly convey fitness advantages if animals are constrained by tradeoffs with other selective pressures like predation or food availability. We address unresolved questions about the survival consequences of habitat choices made during brood-rearing in a precocial species with exclusive maternal care (mallard Anas platyrhynchos, n = 582 radio-marked females on 27 sites over 8 years). We directly linked duckling survival with habitat selection patterns at two spatial scales using logistic regression and model selection techniques. At the landscape scale (55–80 km2), females that demonstrated stronger selection of areas with more cover type 4 wetlands and greater total cover type 3 wetland area (wetlands with large expanses of open water surrounded by either a narrow or wide peripheral band of vegetation, respectively) had lower duckling survival rates than did females that demonstrated weaker selection of these habitats. At finer scales (0.32–7.16 km2), females selected brood-rearing areas with a greater proportion of wetland habitat with no consequences for duckling survival. However, females that avoided woody perennial habitats composed of trees and shrubs fledged more ducklings. The relationship between habitat selection and survival depended on both spatial scale and habitats considered. Females did not consistently select brood-rearing habitats that conferred the greatest benefits, an unexpected finding, although one that has also been reported in other recent studies of breeding birds.  相似文献   

16.
Members of the Src family kinases (SFK) can modulate diverse cellular processes, including division, death and survival, but their role in autophagy has been minimally explored. Here, we investigated the roles of Lyn, a SFK, in promoting the survival of human glioblastoma tumor (GBM) cells in vitro and in vivo using lentiviral vector-mediated expression of constitutively-active Lyn (CA-Lyn) or dominant-negative Lyn (DN-Lyn). Expression of either CA-Lyn or DN-Lyn had no effect on the survival of U87 GBM cells grown under nutrient-rich conditions. In contrast, under nutrient-deprived conditions (absence of supplementation with L-glutamine, which is essential for growth of GBM cells, and FBS) CA-Lyn expression enhanced survival and promoted autophagy as well as inhibiting cell death and promoting proliferation. Expression of DN-Lyn promoted cell death. In the nutrient-deprived GBM cells, CA-Lyn expression enhanced AMPK activity and reduced the levels of pS6 kinase whereas DN-Lyn enhanced the levels of pS6 kinase. Similar results were obtained in vitro using another cultured GBM cell line and primary glioma stem cells. On propagation of the transduced GBM cells in the brains of nude mice, the CA-Lyn xenografts formed larger tumors than control cells and autophagosomes were detectable in the tumor cells. The DN-Lyn xenografts formed smaller tumors and contained more apoptotic cells. Our findings suggest that on nutrient deprivation in vitro Lyn acts to enhance the survival of GBM cells by promoting autophagy and proliferation as well as inhibiting cell death, and Lyn promotes the same effects in vivo in xenograft tumors. As the levels of Lyn protein or its activity are elevated in several cancers these findings may be of broad relevance to cancer biology.  相似文献   

17.
Cytosol progesterone receptors (P-R) were measured in breast fibroadenomas from 88 women, and their levels were compared to the tumor epithelial cell density and estradiol receptor levels (E-R). Three groups of fibroadenoma were distinguished: type I with a high epithelial cell density (n= 18), type III (n = 46) with low epithelial cell density and extensive fibrosis, and type II with cell density intermediate between the two other groups (n = 24). Whereas E-R levels correlated well with cellular density, P-R levels were elevated in group I and absent in group III, but in contrast to E-R, the low P-R levels observed in group II could not be only explained by cellular density. Since P-R is an estrogen-dependent protein and an hormonal marker, its decrease in type II fibroadenoma might be interpreted as reflecting a rapid decrease in hormone dependence.  相似文献   

18.
Behavior of adult Parahucho perryi was examined using bio-logging and acoustic telemetry concurrently in the Bekanbeushi River system, eastern Hokkaido, Japan, in 2009 and 2010. Based on 46.1–87.9 h data from five P. perryi (69.0–80.0 cm fork length) caught from Lake Akkeshi, they used upstream (n = 2), midstream (n = 3), and downstream (n = 4) habitats. Large variability in diel activity and depth occupation existed in each stream habitat; however, fish in the downstream habitat tended to be more active than those in the upper habitats and mainly occupied shallower depths than mean bottom depth in this habitat.  相似文献   

19.
Many animals aggregate into organized temporary or stable groups under the influence of biotic and abiotic factors, and some studies have shown the influence of habitat features on animal aggregation. This study, conducted from 2002 to 2004 in the Dzanga-Ndoki National Park, Central African Republic, studied a herd of forest buffaloes (Syncerus caffer nanus) to determine whether spatial aggregation patterns varied by season and habitat. Our results show that both habitat structure and season influenced spatial aggregation patterns. In particular, in open habitats such as clearings, the group covered a larger area when resting and was more rounded in shape compared to group properties noted in forest during the wet season. Moreover, forest buffaloes had a more aggregated spatial distribution when resting in clearings than when in the forest, and individual positions within the herd in the clearing habitat varied with age and sex. In the clearings, the adult male (n = 24) was generally, on most occasions, located in the centre of the herd (n = 20), and he was observed at the border only four times. In contrast, females (n = 80) occupied intermediate (n = 57), peripheral (n = 14) and central positions (n = 9) within the group. Juveniles (n = 77) also occurred in intermediate (n = 64) and peripheral positions (n = 13). Based on these results, we concluded that habitat characteristics and social behaviour can have relevant effects on the spatial distribution of animals within a group.  相似文献   

20.
《Translational oncology》2020,13(3):100737
Glioblastoma (GBM), the most common primary brain tumor found in adults, is extremely aggressive. These high-grade gliomas, which are very diffuse, highly vascular, and invasive, undergo unregulated vascular angiogenesis. Despite available treatments, the median survival for patients is dismal. ELTD1 (EGF, latrophilin, and 7 transmembrane domain containing protein 1) is an angiogenic biomarker highly expressed in human high-grade gliomas. Recent studies have demonstrated that the blood-brain barrier, as well as the blood-tumor barrier, is not equally disrupted in GBM patients. This study therefore aimed to optimize an antibody treatment against ELTD1 using a smaller scFv fragment of a monoclonal antibody that binds against the external region of ELTD1 in a G55 glioma xenograft glioma preclinical model. Morphological magnetic resonance imaging (MRI) was used to determine tumor volumes and quantify perfusion rates. We also assessed percent survival following tumor postdetection. Tumor tissue was also assessed to confirm and quantify the presence of the ELTD1 scFv molecular targeted MRI probe, as well as microvessel density and Notch1 levels. In addition, we used molecular-targeted MRI to localize our antibodies in vivo. This approach showed that our scFv antibody attached-molecular MRI probe was effective in targeting and localizing diffuse tumor regions. Through this analysis, we determined that our anti-ELTD1 scFv antibody treatments were successful in increasing survival, decreasing tumor volumes, and normalizing vascular perfusion and Notch1 levels within tumor regions. This study demonstrates that our scFv fragment antibody against ELTD1 may be useful and potential antiangiogenic treatments against GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号