首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A G McCubbin  C Zuniga  T Kao 《Génome》2000,43(5):820-826
The Solanaceae family of flowering plants possesses a type of self-incompatibility mechanism that enables the pistil to reject self pollen but accept non-self pollen for fertilization. The pistil function in this system has been shown to be controlled by a polymorphic gene at the S-locus, termed the S-RNase gene. The pollen function is believed to be controlled by another as yet unidentified polymorphic gene at the S-locus, termed the pollen S-gene. As a first step in using a functional genomic approach to identify the pollen S-gene, a genomic BAC (bacterial artificial chromosome) library of the S2S2 genotype of Petunia inflata, a self-incompatible solanaceous species, was constructed using a Ti-plasmid based BAC vector, BIBAC2. The average insert size was 136.4 kb and the entire library represented a 7.5-fold genome coverage. Screening of the library using cDNAs for the S2-RNase gene and 13 pollen-expressed genes that are linked to the S-locus yielded 51 positive clones, with at least one positive clone for each gene. Collectively, at least 2 Mb of the chromosomal region was spanned by these clones. Together, three clones that contained the S2-RNase gene spanned approximately 263 kb. How this BAC library and the clones identified could be used to identify the pollen S-gene and to study other aspects of self-incompatibility is discussed.  相似文献   

2.
Gametophytic self-incompatibility (GSI) is controlled by a complex S locus containing the pistil determinant S-RNase and pollen determinant SFB/SLF. Tight linkage of the pistil and pollen determinants is necessary to guarantee the self-incompatibility (SI) function. However, multiple probable pollen determinants of apple and Japanese pear, SFBBs (S locus F-box brothers), exist in each S haplotype, and how these multiple genes maintain the SI function remains unclear. It is shown here by high-resolution fluorescence in situ hybridization (FISH) that SFBB genes of the apple S ( 9 ) haplotype are physically linked to the S ( 9 ) -RNase gene, and the S locus is located in the subtelomeric region. FISH analyses also determined the relative order of SFBB genes and S-RNase in the S ( 9 ) haplotype, and showed that gene order differs between the S ( 9 ) and S ( 3 ) haplotypes. Furthermore, it is shown that the apple S locus is located in a knob-like large heterochromatin block where DNA is highly methylated. It is proposed that interhaplotypic heterogeneity and the heterochromatic nature of the S locus help to suppress recombination at the S locus in apple.  相似文献   

3.
Qiao H  Wang F  Zhao L  Zhou J  Lai Z  Zhang Y  Robbins TP  Xue Y 《The Plant cell》2004,16(9):2307-2322
Recently, we have provided evidence that the polymorphic self-incompatibility (S) locus-encoded F-box (SLF) protein AhSLF-S(2) plays a role in mediating a selective S-RNase destruction during the self-incompatible response in Antirrhinum hispanicum. To investigate its role further, we first transformed a transformation-competent artificial chromosome clone (TAC26) containing both AhSLF-S(2) and AhS(2)-RNase into a self-incompatible (SI) line of Petunia hybrida. Molecular analyses showed that both genes are correctly expressed in pollen and pistil in four independent transgenic lines of petunia. Pollination tests indicated that all four lines became self-compatible because of the specific loss of the pollen function of SI. This alteration was transmitted stably into the T1 progeny. We then transformed AhSLF-S(2) cDNA under the control of a tomato (Lycopersicon esculentum) pollen-specific promoter LAT52 into the self-incompatible petunia line. Molecular studies revealed that AhSLF-S(2) is specifically expressed in pollen of five independent transgenic plants. Pollination tests showed that they also had lost the pollen function of SI. Importantly, expression of endogenous SLF or SLF-like genes was not altered in these transgenic plants. These results phenocopy a well-known phenomenon called competitive interaction whereby the presence of two different pollen S alleles within pollen leads to the breakdown of the pollen function of SI in several solanaceaous species. Furthermore, we demonstrated that AhSLF-S(2) physically interacts with PhS(3)-RNase from the P. hybrida line used for transformation. Together with the recent demonstration of PiSLF as the pollen determinant in P. inflata, these results provide direct evidence that the polymorphic SLF including AhSLF-S(2) controls the pollen function of S-RNase-based self-incompatibility.  相似文献   

4.
A G McCubbin  X Wang  T H Kao 《Génome》2000,43(4):619-627
Solanaceous type self-incompatibility (SI) is controlled by a single polymorphic locus, termed the S-locus. The only gene at the S-locus that has been characterized thus far is the S-RNase gene, which controls pistil function, but not pollen function, in SI interactions between pistil and pollen. One approach to identifying additional genes (including the pollen S-gene, which controls pollen function in SI) at the S-locus and to study the structural organization of the S-locus is chromosome walking from the S-RNase gene. However, the presence of highly repetitive sequences in its flanking regions has made this approach difficult so far. Here, we used RNA differential display to identify pollen cDNAs of Petunia inflata, a self-incompatible solanaceous species, which exhibited restriction fragment length polymorphism (RFLP) for at least one of the three S-haplotypes (S1, S2, and S3) examined. We found that the genes corresponding to 10 groups of pollen cDNAs are genetically tightly linked to the S-RNase gene. These cDNA markers will expedite the mapping and cloning of the chromosomal region of the Solanaceae S-locus by providing multiple starting points.  相似文献   

5.
Most fruit trees in the Rosaceae exhibit self-incompatibility, which is controlled by the pistil S gene, encoding a ribonuclease (S-RNase), and the pollen S gene at the S-locus. The pollen S in Prunus is an F-box protein gene (SLF/SFB) located near the S-RNase, but it has not been identified in Pyrus and Malus. In the Japanese pear, various F-box protein genes (PpSFBB(-α-γ)) linked to the S-RNase are proposed as the pollen S candidate. Two bacterial artificial chromosome (BAC) contigs around the S-RNase genes of Japanese pear were constructed, and 649?kb around S(4)-RNase and 378?kb around S(2)-RNase were sequenced. Six and 10 pollen-specific F-box protein genes (designated as PpSFBB(4-u1-u4, 4-d1-d2) and PpSFBB(2-u1-u5,) (2-d1-d5), respectively) were found, but PpSFBB(4-α-γ) and PpSFBB(2-γ) were absent. The PpSFBB(4) genes showed 66.2-93.1% amino acid identity with the PpSFBB(2) genes, which indicated clustering of related polymorphic F-box protein genes between haplotypes near the S-RNase of the Japanese pear. Phylogenetic analysis classified 36 F-box protein genes of Pyrus and Malus into two major groups (I and II), and also generated gene pairs of PpSFBB genes and PpSFBB/Malus F-box protein genes. Group I consisted of gene pairs with 76.3-94.9% identity, while group II consisted of gene pairs with higher identities (>92%) than group I. This grouping suggests that less polymorphic PpSFBB genes in group II are non-S pollen genes and that the pollen S candidates are included in the group I PpSFBB genes.  相似文献   

6.
Gametophytic self-incompatibility (SI) possessed by the Solanaceae is controlled by a highly polymorphic locus called the S locus. The S locus contains two linked genes, S-RNase, which determines female specificity, and the as yet unidentified pollen S gene, which determines male specificity in SI interactions. To identify the pollen S gene of Petunia inflata, we had previously used mRNA differential display and subtractive hybridization to identify 13 pollen-expressed genes that showed S -haplotype-specific RFLP. Here, we carried out recombination analysis of 1205 F2 plants to determine the genetic distance between each of these S -linked genes and S-RNase. Recombination was observed between four of the genes (3.16, G211, G212, and G221) and S-RNase, whereas no recombination was observed for the other nine genes (3.2, 3.15, A113, A134, A181, A301, G261, X9, and X11). A genetic map of the S locus was constructed, with 3.16 and G221 delimiting the outer limits. None of the observed crossovers disrupted SI, suggesting that all the genes required for SI are contained in the chromosomal region defined by 3.16 and G221. These results and our preliminary chromosome walking results suggest that the S locus is a huge multi-gene complex. Allelic sequence diversity of G221 and 3.16, as well as of 3.2, 3.15, A113, A134 and G261, was determined by comparing two or three alleles of their cDNA and/or genomic sequences. In contrast to S-RNase, all these genes showed very low degrees of allelic sequence diversity in the coding regions, introns, and flanking regions.  相似文献   

7.
Lai  Zhao  Ma  Wenshi  Han  Bin  Liang  Lizhi  Zhang  Yansheng  Hong  Guofan  Xue  Yongbiao 《Plant molecular biology》2002,50(1):29-41
In many flowering plants, self-fertilization is prevented by an intraspecific reproductive barrier known as self-incompatibility (SI), that, in most cases, is controlled by a single multiallelic S locus. So far, the only known S locus product in self-incompatible species from the Solanaceae, Scrophulariaceae and Rosaceae is a class of ribonucleases called S RNases. Molecular and transgenic analyses have shown that S RNases are responsible for pollen rejection by the pistil but have no role in pollen expression of SI, which appears to be mediated by a gene called the pollen self-incompatibility or Sp gene. To identify possible candidates for this gene, we investigated the genomic structure of the S locus in Antirrhinum, a member of the Scrophulariaceae. A novel F-box gene, AhSLF-S 2, encoded by the S 2 allele, with the expected features of the Sp gene was identified. AhSLF-S 2 is located 9 kb downstream of S 2 RNase gene and encodes a polypeptide of 376 amino acids with a conserved F-box domain in its amino-terminal part. Hypothetical genes homologous to AhSLF-S 2 are apparent in the sequenced genomic DNA of Arabidopsis and rice. Together, they define a large gene family, named SLF (S locus F-box) family. AhSLF-S 2 is highly polymorphic and is specifically expressed in tapetum, microspores and pollen grains in an allele-specific manner. The possibility that Sp encodes an F-box protein and the implications of this for the operation of self-incompatibility are discussed.  相似文献   

8.
In many flowering plants, self-fertilization is prevented by an intraspecific reproductive barrier known as self-incompatibility (SI), that, in most cases, is controlled by a single multiallelic S locus. So far, the only known S locus product in self-incompatible species from the Solanaceae, Scrophulariaceae and Rosaceae is a class of ribonucleases called S RNases. Molecular and transgenic analyses have shown that S RNases are responsible for pollen rejection by the pistil but have no role in pollen expression of SI, which appears to be mediated by a gene called the pollen self-incompatibility or Sp gene. To identify possible candidates for this gene, we investigated the genomic structure of the S locus in Antirrhinum, a member of the Scrophulariaceae. A novel F-box gene, AhSLF-S2, encoded by the S2 allele, with the expected features of the Sp gene was identified. AhSLF-S2 is located 9 kb downstream of S2 RNase gene and encodes a polypeptide of 376 amino acids with a conserved F-box domain in its amino-terminal part. Hypothetical genes homologous to AhSLF-S2 are apparent in the sequenced genomic DNA of Arabidopsis and rice. Together, they define a large gene family, named SLF (S locus F-box) family. AhSLF-S2 is highly polymorphic and is specifically expressed in tapetum, microspores and pollen grains in an allele-specific manner. The possibility that Sp encodes an F-box protein and the implications of this for the operation of self-incompatibility are discussed.  相似文献   

9.
Self-incompatibility (SI) in Brassica is controlled by a single locus, termed the S locus. There is evidence that two of the S locus genes, SLG, which encodes a secreted glycoprotein, and SRK, which encodes a putative receptor kinase, are required for SI on the stigma side. The current model postulates that a pollen ligand recognizing the SLG/SRK receptors is encoded in the genomic region defined by the SLG and SRK genes. A fosmid contig of approximately 65 kb spanning the SLG-910 and SRK-910 genes was isolated from the Brassica napus W1 line. A new gene, SLL3, was identified using a novel approach combining cDNA subtraction and direct selection. This gene encodes a putative secreted small peptide and exists as multiple copies in the Brassica genome. Sequencing analysis of the 65-kb contig revealed seven additional genes and a transposon. None of these seven genes exhibited features expected of S genes on the pollen side. An approximately 88-kb contig of the A14 S region also was isolated from the B. napus T2 line and sequenced. Comparison of the two S regions revealed that (1) the gene organization downstream of SLG in both S haplotypes is highly colinear; (2) the distance between SLG-A14 and SRK-A14 genes is much larger than that between SLG-910 and SRK-910, with the intervening region filled with retroelements and haplotype-specific genes; and (3) the gene organization downstream of SRK in the two haplotypes is divergent. These observations lead us to propose that the SLG downstream region might be one border of the S locus and that the accumulation of heteromorphic sequences, such as retroelements as well as haplotype-unique genes, may act as a mechanism to suppress recombination between SLG and SRK.  相似文献   

10.
配子体自交不亲和植物花粉S基因研究进展   总被引:3,自引:0,他引:3  
配子体自交不亲和植物的自交不亲和性是由雌蕊自交不亲和因子和花粉自交不亲和因子相互作用的结果。目前已经分离和鉴定了雌蕊自交不亲和基因及其表达产物。最近从金鱼草、Prumusdulcis、梅等植物中分离的F-box基因,它具有花粉S基因特点,即在花药、成熟的花粉和花粉管中特异表达;在基因位置上,与S-RNase基因紧密连锁;不同物种或同一物种不同品种F-box基因间核苷酸和氨基酸序列上存在高度多态性。通过分子生物学方法和杂交授粉试验证明所分离的F-box基因是花粉自交不亲和基因,但目前尚未分离出该类基因相应的表达蛋白。主要综述了配子体自交不亲和植物花粉自交不亲和基因的发现、基因的结构、雌蕊自交不亲和因子和花粉自交不亲和因子相互作用的模型。  相似文献   

11.
12.
Gametophytic self-incompatibility in Rosaceae, Solanaceae, and Scrophulariaceae is controlled by the S locus, which consists of an S-RNase gene and an unidentified "pollen S" gene. An approximately 70-kb segment of the S locus of the rosaceous species almond, the S haplotype-specific region containing the S-RNase gene, was sequenced completely. This region was found to contain two pollen-expressed F-box genes that are likely candidates for pollen S genes. One of them, named SFB (S haplotype-specific F-box protein), was expressed specifically in pollen and showed a high level of S haplotype-specific sequence polymorphism, comparable to that of the S-RNases. The other is unlikely to determine the S specificity of pollen because it showed little allelic sequence polymorphism and was expressed also in pistil. Three other S haplotypes were cloned, and the pollen-expressed genes were physically mapped. In all four cases, SFBs were linked physically to the S-RNase genes and were located at the S haplotype-specific region, where recombination is believed to be suppressed, suggesting that the two genes are inherited as a unit. These features are consistent with the hypothesis that SFB is the pollen S gene. This hypothesis predicts the involvement of the ubiquitin/26S proteasome proteolytic pathway in the RNase-based gametophytic self-incompatibility system.  相似文献   

13.
Almond has a self-incompatibility system that is controlled by an S locus consisting of the S-RNase gene and an unidentified "pollen S gene." An almond cultivar "Jeffries," a somaclonal mutant of "Nonpareil" (S(c)S(d)), has a dysfunctional S(c) haplotype both in pistil and pollen. Immunoblot and genomic Southern blot analyses detected no S(c) haplotype-specific signal in Jeffries. Southern blot showed that Jeffries has an extra copy of the S(d) haplotype. These results indicate that at least two mutations had occurred to generate Jeffries: (1) deletion of the S(c) haplotype and (2) duplication of the S(d) haplotype. To analyze the extent of the deletion in Jeffries and gain insight into the physical limit of the S locus region, approximately 200 kbp of a cosmid contig for the S(c) haplotype was constructed. Genomic Southern blot analyses showed that the deletion in Jeffries extends beyond the region covered by the contig. Most cosmid end probes, except those near the S(c)-RNase gene, cross-hybridized with DNA fragments from different S haplotypes. This suggests that regions away from the S(c)-RNase gene can recombine between different S haplotypes, implying that the cosmid contig extends to the borders of the S locus.  相似文献   

14.
Hua Z  Meng X  Kao TH 《The Plant cell》2007,19(11):3593-3609
Petunia inflata possesses S-RNase-based self-incompatibility (SI), which prevents inbreeding and promotes outcrossing. Two polymorphic genes at the S-locus, S-RNase and P. inflata S-locus F-box (Pi SLF), determine the pistil and pollen specificity, respectively. To understand how the interactions between Pi SLF and S-RNase result in SI responses, we identified four Pi SLF-like (Pi SLFL) genes and used them, along with two previously identified Pi SLFLs, for comparative studies with Pi SLF(2). We examined the in vivo functions of three of these Pi SLFLs and found that none functions in SI. These three Pi SLFLs and two other Pi SLFs either failed to interact with S(3)-RNase (a non-self S-RNase for all of them) or interacted much more weakly than did Pi SLF(2) in vitro. We divided Pi SLF(2) into FD1 (for Functional Domain1), FD2, and FD3, each containing one of the Pi SLF-specific regions, and used truncated Pi SLF(2), chimeric proteins between Pi SLF(2) and one of the Pi SLFLs that did not interact with S(3)-RNase, and chimeric proteins between Pi SLF(1) and Pi SLF(2) to address the biochemical roles of these three domains. The results suggest that FD2, conserved among three allelic variants of Pi SLF, plays a major role in the strong interaction with S-RNase; additionally, FD1 and FD3 (each containing one of the two variable regions of Pi SLF) together negatively modulate this interaction, with a greater effect on interactions with self S-RNase than with non-self S-RNases. A model for how an allelic product of Pi SLF determines the fate of its self and non-self S-RNases in the pollen tube is presented.  相似文献   

15.
S-RNase-based self-incompatibility has been identified in three flowering plant families, including the Solanaceae, and this self/non-self recognition mechanism between pollen and pistil is controlled by two polymorphic genes at the S -locus, S-RNase and S-locus F-box ( SLF ). S-RNase is produced in the pistil and taken up by pollen tubes in a non- S- haplotype-specific manner. How an allelic product of SLF interacts with self and non-self S-RNases to result in growth inhibition of self pollen tubes is not completely understood. One model predicts that SLF targets non-self S-RNases for ubiquitin/26S proteasome-mediated degradation, thereby only allowing self S-RNase to exert cytotoxic activity inside a pollen tube. To test this model, we studied whether any of the 20 lysine residues in S3-RNase of Petunia inflata might be targets for ubiquitination. We identified six lysines near the C-terminus for which mutation to arginine significantly reduced ubiquitination and degradation of the mutant S3-RNase, GST:S3-RNase (K141–164R) in pollen tube extracts. We further showed that GST:S3-RNase (K141–164R) and GST:S3-RNase had similar RNase activity, suggesting that their degradation was probably not caused by an ER-associated protein degradation pathway that removes mis-folded proteins. Finally, we showed that PiSBP1 ( P. inflata S-RNase binding protein 1), a potential RING-HC subunit of the PiSLF ( P. inflata SLF)-containing E3-like complex, could target S-RNase for ubiquitination in vitro . All these results suggest that ubiquitin/26S proteasome-dependent degradation of S-RNase may be an integral part of the S-RNase-based self-incompatibility mechanism.  相似文献   

16.
17.
Gametophytic self-incompatibility (GSI) in the grasses is controlled by a distinct two-locus genetic system governed by the multiallelic loci S and Z. We have employed diploid Hordeum bulbosum as a model species for identifying the self-incompatibility (SI) genes and for elucidating the molecular mechanisms of the two-locus SI system in the grasses. In this study, we attempted to identify S haplotype-specific cDNAs expressed in pistils and anthers at the flowering stage in H. bulbosum, using the AFLP-based mRNA fingerprinting (AMF, also called cDNA-AFLP) technique. We used the AMF-derived DNA clones as markers for fine mapping of the S locus, and found that the locus resided in a chromosomal region displaying remarkable suppression of recombination, encompassing a large physical region. Furthermore, we identified three AMF-derived markers displaying complete linkage to the S locus, although they showed no significant homology with genes of known functions. Two of these markers showed expression patterns that were specific to the reproductive organs (pistil or anther), suggesting that they could be potential candidates for the S gene.  相似文献   

18.
Matsumoto  Daiki  Tao  Ryutaro 《Plant molecular biology》2019,100(4-5):367-378
Key message

S-RNase was demonstrated to be predominantly recognized by an S locus F-box-like protein and an S haplotype-specific F-box-like protein in compatible pollen tubes of sweet cherry.

Abstract

Self-incompatibility (SI) is a reproductive barrier that rejects self-pollen and inhibits self-fertilization to promote outcrossing. In Solanaceae and Rosaceae, S-RNase-based gametophytic SI (GSI) comprises S-RNase and F-box protein(s) as the pistil and pollen S determinants, respectively. Compatible pollen tubes are assumed to detoxify the internalized cytotoxic S-RNases to maintain growth. S-RNase detoxification is conducted by the Skp1-cullin1-F-box protein complex (SCF) formed by pollen S determinants, S locus F-box proteins (SLFs), in Solanaceae. In Prunus, the general inhibitor (GI), but not pollen S determinant S haplotype-specific F-box protein (SFB), is hypothesized to detoxify S-RNases. Recently, SLF-like proteins 1–3 (SLFL1–3) were suggested as GI candidates, although it is still possible that other proteins function predominantly in GI. To identify the other GI candidates, we isolated four other pollen-expressed SLFL and SFB-like (SFBL) proteins PavSLFL6, PavSLFL7A, PavSFBL1, and PavSFBL2 in sweet cherry. Binding assays with four PavS-RNases indicated that PavSFBL2 bound to PavS1, 6-RNase while the others bound to nothing. PavSFBL2 was confirmed to form an SCF complex in vitro. A co-immunoprecipitation assay using the recombinant PavS6-RNase as bait against pollen extracts and a mass spectrometry analysis identified the SCF complex components of PavSLFLs and PavSFBL2, M-locus-encoded glutathione S-transferase (MGST), DnaJ-like protein, and other minor proteins. These results suggest that SLFLs and SFBLs could act as predominant GIs in Prunus-specific S-RNase-based GSI.

  相似文献   

19.
Wheeler D  Newbigin E 《Genetics》2007,177(4):2171-2180
The S locus of Nicotiana alata encodes a polymorphic series of ribonucleases (S-RNases) that determine the self-incompatibility (SI) phenotype of the style. The pollen product of the S locus (pollen S) in N. alata is unknown, but in species from the related genus Petunia and in self-incompatible members of the Plantaginaceae and Rosaceae, this function has been assigned to an F-box protein known as SLF or SFB. Here we describe the identification of 10 genes (designated DD1-10) encoding SLF-related proteins that are expressed in N. alata pollen. Because our approach to cloning the DD genes was based on sequences of SLFs from other species, we presume that one of the DD genes encodes the N. alata SLF ortholog. Seven of the DD genes were exclusively expressed in pollen and a low level of sequence variation was found in alleles of each DD gene. Mapping studies confirmed that all 10 DD genes were linked to the S locus and that at least three were located in the same chromosomal segment as pollen S. Finally, the different topologies of the phylogenetic trees produced using available SLF-related sequences and those produced using S-RNase sequences suggests that pollen S and the S-RNase have different evolutionary histories.  相似文献   

20.
Chromosome 9q34 has been extensively studied and mapped due to the presence of known disease genes, principally tuberous sclerosis 1 (TSC1), in this region. During the course of our mapping of this region we constructed a 555-kb contig beginning approximately 50 kb proximal to the dopamine-beta-hydroxylase (DBH) gene and extending, with one small deletion, distal to the D9S114 marker. The contig consists of 11 P1 clones, four PAC clones, one BAC clone and six cosmid clones and contains 27 new nonpolymorphic STSs. We have found the region to be unstable in P1, PAC and BAC cloning vehicles and have identified several deleted genomic clones. In addition, we have isolated and mapped the 3' portions of three putative genes located within or immediately distal to the DBH gene, including one large gene that runs on the opposite strand to DBH and utilizes portions of two DBH exons. The genomic clones of the contig, cDNAs and new STSs will be useful reagents for the further study and mapping of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号